Probing the BSM physics with CMB precision cosmology: an application to supersymmetry

Yuki Watanabe National Institute of Technology, Gunma College

with Ioannis Dalianis (NTUA) Based on arXiv:1801.05736 (accepted by JHEP)

新学術領域「加速宇宙」シンポジウム

Why does the Universe accelerate? —Exhaustive study and challenge for the future

Tohoku University Feb. 10, 2018

Outline

- 1. Introduction
- 2. CMB observables and the post-inflationary evolution
 - shift in (n_s, r) due to late entropy production
- 3. SUSY DM cosmology
 - gravitino, neutralino
- 4. Alternative cosmic histories and SUSY
 - diluter field X, low reheat temp., max dilution
- 5. A concrete example
 - R+R² (super)gravity inflation model
- 6. Conclusion

CMB observations and BSM physics

- (n_s , r) precision measurements from CMB
- No signal of physics beyond the Standard Model (BSM) at the LHC

CMB constraint on inflation models

[Fig. from Planck 2015]

• Monomial potentials with p > 2 in GR are almost excluded.

CMB constraint on inflation models

[Fig. from Planck 2015]

- Monomial potentials with p > 2 in GR are almost excluded.
- What if we could nail down to further precision?

CMB uncertainties from the post-inflationary evolution [Easther, Galvez, Ozsoy, Watson 2013]

Thermal History

Alternative History

Shift in (ns, r) due to late entropy production

50

After inflaton decay, a diluter field X (modulus, flaton) may dominate the ٠ universe until BBN. Decays of X produce entropy:

Supersymmetric dark matter cosmology

Merits: Gauge coupling unification, stable dark matter, baryogenesis, stringy UV completion, ...

- 1. Gravitino LSP
- 2. Neutralino LSP (WIMP)
 - Thermal DM (freeze out): thermal scatterings with the MSSM, messenger fields
 - Non-thermal DM (freeze in): decays, thermal scatterings

Light WIMP mass is disfavored by the LHC. $\Omega_{DM}h^2$ is severely constrained when sparticle masses increase:

$$\begin{split} \Omega_{3/2} &\propto m_{3/2}^{\alpha} \left(\frac{m_{\tilde{g}}}{m_{3/2}}\right)^{\beta} \left(\frac{m_{\tilde{f}}}{m_{3/2}}\right)^{\gamma} T_{\rm rh}^{\delta} , \qquad m_{3/2} < m_{\tilde{g}}, m_{\tilde{f}} , \\ \Omega_{\tilde{\chi}^{0}} &\propto m_{\tilde{\chi}^{0}}^{\tilde{\alpha}} m_{3/2}^{\tilde{\beta}} \left(\frac{m_{\tilde{f}}}{m_{3/2}}\right)^{\tilde{\gamma}} T_{\rm rh}^{\tilde{\delta}} , \qquad m_{\tilde{\chi}^{0}} < m_{3/2}, m_{\tilde{f}} \end{split}$$

Alternative cosmic histories and SUSY

★ High reheating temp. generally overproduce light LSP

- → Dilution of DM abundance is necessary: diluter field X
- If $D_X = 1$ then $T_{\rm rh} \lesssim \tilde{m}$ or $\tilde{m} \sim \text{TeV}$ • If $\mathcal{O}(\text{TeV}) < (m_{\rm LSP}, \tilde{m}) < T_{\rm rh}$ then $D_X \ge D_X^{\min} \equiv \frac{\Omega_{\rm LSP}^<}{0.12 \, h^{-2}}$ where \tilde{m} the sparticle mass scale.

$$N_*|_{R^2} = 55.9 + \frac{1}{4}\ln\epsilon_* + \frac{1}{4}\ln\frac{V_*}{\rho_{\text{end}}} + \frac{1}{12}\ln\left(\frac{g_{*\text{rh}}}{100}\right) + \frac{1}{3}\ln\left(\frac{T_{\text{rh}}}{10^9\,\text{GeV}}\right) - \Delta N_X$$

$$\mathcal{L} = -3M_P^2 \int d^4\theta \, E \, \left[1 - \frac{4}{m^2} \mathcal{R}\bar{\mathcal{R}} + \frac{\zeta}{3m^4} \mathcal{R}^2 \bar{\mathcal{R}}^2 \right]$$

↓ dual description

Two chiral superfields T, S + standard SUGRA (+ SUSY breaking field Z) Real component of T = Inflaton

#	m_Z	$m_{ ilde{g}}$	$m_{ ilde{f}}$	$m_{3/2} \ ({ m LSP})$	D_X	N_*	n_s	r	Origin
1	10^{4}	10^{4}	10^{4}	10^{2}	$10^{4} _{\rm min}$	$51 _{\rm max}$	$0.963 _{\mathrm{max}}$	$0.0038 _{\min}$	Th
2	10^{4}	10^{4}	10^{5}	10^{3}	$10^{10} _{\min}$	$46 _{\rm max}$	$0.960 _{\mathrm{max}}$	$0.0044 _{\min}$	Th
3	10^{6}	10^{5}	10^{6}	10^{4}	$10^{6} _{\min}$	$49 _{\rm max}$	$0.962 _{\mathrm{max}}$	$0.0041 _{\min}$	Non-th
4	10^{3}	10^{3}	10^{4}	10	1	54	0.965	0.0034	Th

#	m_Z	$m_{3/2}$	$m_{ ilde{f}}$	$m_{ ilde{\chi}^0}~({ m LSP})$	$D_{(X)}$	N_*	n_s	r	Origin
1	10^{7}	10^{6}	10^{6}	10^{3}	$10^{2} _{\rm min}$	$52 _{\rm max}$	$0.964 _{\mathrm{max}}$	$0.0036 _{\min}$	Non-th
2	10^{9}	10^{8}	10^{8}	10^{3}	$10^{2} _{\rm min}$	$52 _{\rm max}$	$0.964 _{\mathrm{max}}$	$0.0036 _{\min}$	Th
3	10^{8}	10^{7}	10^{7}	10^{5}	$10^{8} _{\min}$	$ 48 _{\rm max}$	$0.961 _{\max}$	$0.0042 _{\min}$	Non-th
4	10^{5}	10^{5}	10^{5}	10^{3}	1	54	0.965	0.0034	Th

Conclusion

- We cannot exclude or verify SUSY by (ns, r) precision measurements.
- Nevertheless we can support the presence of BSM physics by ruling out the "BSM-desert" hypothesis for a particular inflation model.
- Hence precision cosmology can offer us complementary constrains to the parameter space of SUSY.