Symposium "Why does the Universe accelerate?", 10-12 Feb 2018 @ Tohoku Univ. 公募研究「宇宙マイクロ波背景放射における揺らぎの非線形進化」

Reconstruction of primordial tensor power spectrum from B-mode observations

Rikkyo University

Collaboration with Eiichiro Komatsu (MPA) Masashi Hazumi (KEK) Misao Sasaki (YITP)

CMB B-mode

(e.g. LiteBIRD)

- A polarisation mode of photons $(Q, U) \rightarrow (E_{\ell m}, B_{\ell m})$
- Generated by gravitational waves (tensor perturbations)
- No detections so far, but possibly to be done in the (near) future

Gives fruitful information on inflation and the early Universe.

How well can we distinguish primordial power spectra predicted in various models from the fiducial one (slow-roll inflation) ?

How accurately can we measure the primordial spectrum under the expected observational noises ?

 $P^{(T)}(k) + \delta P^{(T)}(k)$

 $C_{\ell}^{(I)BB} + \mathcal{N}_{\ell}$

Fisher matrix

Fisher Information Matrix for CMB

$$F_{ij} = \frac{1}{2} \sum_{\ell=2}^{\ell_{\max}} (2\ell+1) \frac{1}{\mathcal{N}_{\ell}^2} \left(\frac{\partial C_{\ell}^{(T)BB}}{\partial \theta_i} \right) \left(\frac{\partial C_{\ell}^{(T)BB}}{\partial \theta_j} \right)$$

$$\mathcal{N}_{\ell} = C_{\ell}^{(T)BB} + C_{\ell}^{(S)lens} + N_{\ell}$$
 "noise"

 θ_i : characterising the primordial spectrum $P^{(T)}(k)$

Modelling tensor power spectrum

Fisher Information Matrix for CMB

$$F_{ij} = \frac{1}{2} \sum_{\ell=2}^{\ell_{\max}} (2\ell+1) \frac{1}{\mathcal{N}_{\ell}^2} \left(\frac{\partial C_{\ell}^{(T)BB}}{\partial \delta \mathcal{P}_i} \right) \left(\frac{\partial C_{\ell}^{(T)BB}}{\partial \delta \mathcal{P}_j} \right)$$
$$\mathcal{N}_{\ell} = C_{\ell}^{(T)BB} + C_{\ell}^{(S)lens} + N_{\ell}$$

Building block 1/3 : Tensor B-mode

Angular power spectrum of B-mode fluctuations

$$C_{\ell}^{(T)BB} = 4\pi \int T_{B\ell}^{(T)2}(k) \mathcal{P}_{h}(k) \frac{dk}{k}$$
(ℓ is an index of $Y_{\ell m}$)
$$\mathcal{P}_{h}(k) = \frac{k^{3}}{2\pi^{2}} P_{h}(k)$$

Transfer function given by solving Boltzmann equations with parameters from Planck 2015 results :

$$\begin{aligned} h &= 0.6774 & T_{\gamma,0} = 2.7255 \text{ K} \\ h^2 \Omega_{\rm CDM} &= 0.1188 & \tau = 0.066 \\ h^2 \Omega_{\rm b} &= 0.02230 & Y_p = 0.24667 \\ N_{\rm eff} &= 3.046 \end{aligned}$$

Building block 2/3 : Lensing B-mode

B-mode induced by $E \rightarrow B$ conversion of lensing

Smith et al., JCAP 1206 (2012) 014, arXiv:1010.0048

For simplicity, here we consider a white noise (independent to ℓ)

Katayama & Komatsu, APJ 737 (2011) 78, arXiv:1101.5210

$$N_{\ell} = \left(\frac{\pi}{10800} \frac{w_p^{-1/2}}{\mu \mathbf{K} \cdot \operatorname{arcmin}}\right)^2 \mu K^2 \cdot \operatorname{str}$$

 $w_p^{-1/2} = 63.1 \ \mu K \cdot \operatorname{arcmin}$ (Planck, averaged over 3 bands) Zaldarriaga et al. arXiv:0811.3918 $w_p^{-1/2} = \mathcal{O}(1) \mu K \cdot \operatorname{arcmin}$ (Future experiments)

Fisher Information Matrix for CMB

Numerator:
$$\frac{\partial}{\partial \theta_i} C_{\ell}^{(T)BB} = 4\pi \int_{k_{i-1}}^{k_i} T_{B\ell}^{(T)2}(k) \frac{dk}{k}$$

Denominator : $\mathcal{N}_{\ell} = C_{\ell}^{(T)BB} + C_{\ell}^{\text{lens}} + N_{\ell}$

Uncertainty to measure $\delta \mathcal{P}_i$: $\sigma (\delta \mathcal{P}_i)^2 = (F^{-1})_{ii}$

Results : $1-\sigma$ error of binned spectrum

Results : demonstration

More quantitatively, we should estimate χ^2 .

$$\chi^{2} = \sum_{ij} \Delta \mathcal{P}_{i}(k) F_{ij} \Delta \mathcal{P}_{j}(k)$$
$$\Delta \mathcal{P}_{i}(k) = \mathcal{P}_{i}^{\text{model}}(k) - \mathcal{P}_{i}^{\text{fid}}(k)$$

Probability to exceed (PTE) = Probability to confuse a model spectrum with the fiducial one.

Results : demonstration

Distinguishable from fiducial spectrum with a high significance !

Results : demonstration

All models cannot be distinguished from the fiducial one.

- To be available on your web browserCompute from numerical data of spectrum as well as in built-in models

アクティビティ © Firefox ▼	火曜日 17:43			_A •	(1-	• ₿ -
Reconstruction of primordial tensor perturbations [fisherbb ver.1.3.9] - Mozilla Firefox ×						
Reconstruction of primor × Reconstruction of primor × Reconstruction of primor.	× +					グループ 5
(i) localhost/~hiramatsu/fisherbb/code/fisherbb.php#		୯ ୧. fb		→ ☆ 🖻 🖡	1	
Reconstruction of primordial tensor perturbations [fisherbb ver.1.3.9]						
	MAKE PLOT					
10-7	Basic Drawing	Built-in models	Custom models			
	Basic parameters					
$(1)^{(1)}_{-1}$ $(1)^$	Error-bar type Tensor-to-scalar ratio	(F^-1)_iiv				
	Spectral index k _{min}	0.0 0.0001 Mp	Mpc ⁻¹			
	k _{max} Number of bins	0.01 Mp	oc ⁻¹			
	Noise level	1.0 µK	μK·arcmin			
wave number [/Mpc]	l _{max}	500 No	ote : l _{max} ≤ 500			
	Delensing factor $\boldsymbol{\lambda}$	1.0 No	ote : denominator of	$F \supset \lambda C_l^{lens}$		
χ^2 σ^2	With cosmic variance ?	included 🗸				
Massive 1.465e+2 8.148e+0						
custom 1 9.028e+3 7.442e+2						

How accurately can we measure the primordial spectrum under the expected observational noises ?

(with a simple detector noise model + no other foreground noises)

Achievement

- Linear power spectra of Scalar/Vector/Tensor Θ /E/B-modes
- Linear power spectra of Gradient/Curl-modes induced by S/V/T perturbations
- Lensed power spectra and bispectra of all possible combinations up to 2×2 and $2 \times 1 \times 1$ (50 C_{ℓ} 's and 128 $B_{\ell_1 \ell_2 \ell_3}$'s)
- $f_{\rm NL}$ estimator for Local/Equilateral/Orthogonal/Folded templates
- Scalar/Tensor bispectra based on 'curve'-of-sight formula

Lensed signal

$$\widetilde{X}_{LM} \approx X_{LM} + \sum \mathcal{M}_{Mmm'}^{L\ell\ell';x;X\overline{X}} x_{\ell m} \overline{X}_{\ell'm'}$$
$$X = \Theta, E, B$$
$$x = \phi, \varpi$$

Lensed spectra

$$\begin{split} \Delta C_{L}^{\widetilde{X}\widetilde{Y}(22)} &= \frac{1}{2L+1} \sum_{\ell\ell'} \sum_{xy\overline{XY}} M_{L\ell\ell'}^{X\overline{X},x} \left(M_{L\ell\ell'}^{Y\overline{Y},y} C_{\ell'}^{\overline{XY}} C_{\ell}^{xy} + (-1)^{L+\ell+\ell'} M_{L\ell'\ell}^{Y\overline{Y},y} C_{\ell'}^{\overline{X}y} C_{\ell'}^{\overline{Y}x} \right) \\ \widehat{B}_{L_{1}L_{2}L_{3}}^{XYZ,s_{1}s_{2}s_{3}(211)} &= \sum_{\overline{X}x} \left[M_{L_{1}L_{3}L_{2}}^{X\overline{X},x} C_{L_{2}}^{\overline{X}Y(s_{2})} C_{L_{3}}^{xZ(s_{3})} \delta_{s_{1}s_{2}} + (Y \leftrightarrow Z) \right] \\ &+ \sum_{\overline{X}x} \left[M_{L_{2}L_{1}L_{3}}^{Y\overline{X},x} C_{L_{3}}^{\overline{X}Z(s_{3})} C_{L_{1}}^{xX(s_{1})} \delta_{s_{2}s_{3}} + (X \leftrightarrow Z) \right] \\ &+ \sum_{\overline{X}x} \left[M_{L_{3}L_{2}L_{1}}^{Z\overline{X},x} C_{L_{1}}^{\overline{X}X(s_{1})} C_{L_{2}}^{xY(s_{2})} \delta_{s_{1}s_{3}} + (X \leftrightarrow Y) \right] \end{split}$$

Current status of CMB2ND

Using CMB2ND, we study...

- Cosmic strings, inducing the unequal-time correlation $\mathcal{P}(k,\eta_1,\eta_2)$

e.g. Daveiro et al., PRD93 (2016) 085014, arXiv:1510.05006

- Statistical anisotropy, inducing $\ell, \ell+1$ correlation $C_{\ell,\ell+1}$

e.g. Fujita et al., arXiv:1801.02778