Inflationary Universe (project A01 status report)

Toward Understanding Physics/Mechanism of Inflation

Misao Sasaki

10 February, 2018

Inflation: current status

- scalar spectral index: $n_s < 1$ at ~ 5σ
- tensor/scalar ratio: r < 0.1 implies E_{inflation} < 10¹⁶ GeV
- simple, canonical models are on verge of extinction (m²φ² model excluded at > 2σ)
- R² (Starobinsky) model seems to fit best. But why?
- f_{NL}^{local} <O(1) suggests (effectively) single-field slow-roll but f_{NL}^{local} =O(1) or scale-dep f_{NL}^{local} =O(10) not excluded

some element of non-canonicality seems necessary

Theories/models? Observational tests/signatures?

research summary

Teruaki Suyama Shuichiro Yokoyama

Tsutomu Kobayashi, Kazunori Nakayama, Misao Sasaki, Tomo Takahashi, Masahide Yamaguchi, Jun'ichi Yokoyama

Selected Recent Papers

Observational signatures of the parametric amplification of gravitational waves during reheating after inflation, S Kuroyanagi, C Lin, M Sasaki, S Tsujikawa, PRD97 (2018) 023516 Pole inflation in Jordan frame supergravity, K Saikawa, M Yamaguchi, Y Yamashita, D Yoshida, JCAP 1801 (2018) 031 Extended mimetic gravity: Hamiltonian analysis and gradient instabilities, K Takahashi, T Kobayashi, JCAP 1711 (2017) 038 Refined Study of Isocurvature Fluctuations in the Curvaton Scenario, N Kitajima, D Langlois, T Takahashi, S Yokoyama, JCAP 1712 (2017) 042 Electroweak Vacuum Metastability and Low-scale Inflation Y Ema, K Mukaida, K Nakayama, JCAP 1712 (2017) 030 Revisiting the oscillations in the CMB angular power spectra at ℓ~120 in the Planck 2015 data, K Horiguchi, K Ichiki, J Yokoyama, PTEP 2017 (2017) 093E01 New bound on low reheating temperature for dark matter in models with early matter domination, KY Choi, T Takahashi, PRD96 (2017) 041301 Spin Distribution of Primordial Black Holes, T Chiba, S Yokoyama, PTEP 2017 (2017) 083E01 9. Note on Reheating in G-inflation HB Moghaddam, R Brandenberger, J Yokoyama, PRD95 (2017) 063529. CMB Scale Dependent Non-Gaussianity from Massive Gravity during Inflation, G Domenech, T Hiramatsu, C Lin, M Sasaki, JCAP 1705 (2017) 034 3

1. Modified Gravity

K Takahashi, T Kobayashi, JCAP 1711 (2017) 038 [1708.02951]

"Extended mimetic gravity"

generated general degenerate higher derivative theories by performing noninvertible conformal transformation and analyzed their cosmological stability.

 result supports the conjecture "all degenerate scalar-tensor theories that are not equivalent to Horndeski under disformal transformation are unstable"

Modified Gravity (conti.)

S Hirano, T Kobayashi, H Tashiro, S Yokoyama, 1801.07885 [astro-ph.CO] +

• *"Matter bispectrum beyond Horndeski" + ongoing work*

GW170817 \rightarrow GW propagation speed = c \rightarrow strong constraint on MG

- allowed class of models = DHOST/beyond Horndeski
- any other constraint from, eg, growth rate of density perturbations?

2. EW Vacuum Metastability and Low-scale Inflation

Y Ema, K Mukaida, K Nakayama, JCAP 1712(2017) 030 [1706.08920]

Instability of Electroweak Vacuum

- Current vacuum = broken EW symmetry due to Higgs
- Higgs' mass: 125GeV (LHC) → Metastable Vacuum
- Why the current Universe can exist?

Low-scale Inflation

$$\mathscr{L} = \frac{M_{\rm Pl}^2}{2} R - \frac{1}{2} \left(\partial \phi \right)^2 - \frac{1}{2} \left(\partial h \right)^2 - U(\phi, h) \qquad V(\phi) = \Lambda^4 \left[1 - \left(\frac{\phi}{\nu_{\phi}} \right)^n \right]^2$$

Inflaton-Higgs coupling:
$$U(\phi, h) = V(\phi) + \frac{\widetilde{\sigma}_{\phi h}}{2} \phi h^2 + \frac{\lambda_{\phi h}}{2} \phi^2 h^2 + \frac{m_h^2}{2} h^2 + \frac{\lambda_h}{4} h^4$$

Higgs fluctuations amplify due to parametric resonance

initial value at the onset of oscillations $2\sigma + b \varphi_{ini}$

$p \equiv \frac{2\sigma_{\phi h}\varphi_{\rm ini}}{m_{\phi}^2}, \ q \equiv \frac{\lambda_{\phi h}\varphi_{\rm ini}^2}{m_{\phi}^2}$

stability constraint:

3. Probing multi-field inflation models with CMB spectral distortion

K Kainulainen, J Leskinen, S Nurmi, T Takahashi, JCAP1711 (2017) 002 [1707.01300]

• CMB μ distortion can probe primordial power spectrum on small scales.

$$\mu = \int_{z_1}^{z_2} dz e^{-z^2/z_{\rm DC}^2} \left[-\int \frac{dk^3}{(2\pi)^3} A \mathcal{P}_{\zeta}(k) \frac{d}{dz} \left(\frac{3c_s^2}{\sqrt{2}e^{-k^2/k_D^2}} \right) \right]$$

• Scales of $50/Mpc < k < 10^4 /Mpc$ can be probed.

4. Pole inflation in Jordan frame supergravity

K Saikawa, M Yamaguchi, Y Yamashita, D Yoshida, JCAP 1801 (2018) 031 [1709.03440].

- The models favored by the current observations (Starobinsky model, Higgs inflation, αattractor) can be understood in a unified way as pole inflation.
- The non-minimal coupling to gravity (R) may (easily) lead to this kind of pole structure of kinetic term after conformal transformation to Einstein frame.
- We simply impose the canonical kinetic term of a scalar field in the Jordan frame like Ferrara et al. (dubbed FKLMP model).
- We have shown that, in the FKLMP model, the relation between the Kahler potential and the frame function is uniquely determined by imposing that a scalar field has the canonical kinetic term and that a frame function consists only of a holomorphic term for symmetry breaking terms.
- We have relaxed this latter condition and discussed a wider class of models.

Pole inflation (Galante et al., Broy et al., Terada.) $S = \int d^4x \sqrt{-g} \left[\frac{1}{2} R - \frac{1}{2} K(\rho) g^{\mu\nu} \partial_{\mu} \rho \partial_{\nu} \rho - V(\rho) \right]$ $K(\rho)$ has a pole at $\rho = 0$ in Laurent series : $K(\rho) = \frac{a_p}{\rho^p} + \cdots,$ $K(\rho) = \frac{a_p}{\rho^p} + \cdots,$ $P \simeq \begin{cases} \rho_0 e^{-\frac{1}{\sqrt{a_2}}} & \text{for } p = 2\\ \left(\frac{(2-p)}{2\sqrt{a_2}}\varphi\right) & \text{for } p > 2 \end{cases}$ $V(\rho) \text{ is regular at } \rho = 0:$ $V(\varphi) \simeq \begin{cases} V_0 \left[1 - \rho_0 e^{-\frac{\varphi}{\sqrt{a_2}}}\right] & \text{for } p = 2\\ V_0 \left[1 - \left(\frac{(2-p)}{2\sqrt{a_2}}\varphi\right)^{\frac{2}{2-p}}\right] & \text{for } p > 2 \end{cases}$ (asymptotically flat) $\rho \simeq \begin{cases} \rho_0 e^{-\frac{1}{\sqrt{a_2}}} & \text{for } p = 2\\ \left(\frac{(2-p)}{2\sqrt{a_2}}\varphi\right) & \text{for } p > 2 \end{cases}$ (asymptotically flat) By canonically normalizing a field, the potential is effectively stretched. α attractors $\leftarrow \rightarrow p=2, a_2 = 3\alpha/2$ a_p dependence appears only in r. Primordial perturbations : $\begin{cases} n_s - 1 \simeq -\frac{p}{p-1} \frac{1}{N}, & \text{ap dependence appears only in r.} \\ r \simeq \frac{8}{a_p} \left[\frac{a_p}{(p-1)N} \right]^{\frac{p}{p-1}}. & \text{Though subleading terms yield higher order corrections,} \\ \text{the leading order predictions do not depend on the details.} \end{cases}$

10

FKLMP model and its extension

(Ferrara, Kallosh, Linde, Marrani, Van Proeyen 2010)

Inflation models in Jordan frame supergravity with the canonical kinetic term

Kahler potential:
$$\mathcal{K}(z, \bar{z}) = -3 \log \left(-\frac{1}{3} \Phi(z, \bar{z}) \right)$$
.
(special relation between K & Φ)
Frame function: $\Phi(z, \bar{z}) = -3 + \delta_{\alpha \bar{\beta}} z^{\alpha} \bar{z}^{\bar{\beta}} + J(z) + \bar{J}(\bar{z})$
with $\Phi_{\alpha} \partial_{\mu} z^{\alpha} - \Phi_{\bar{\beta}} \partial_{\mu} \bar{z}^{\bar{\beta}} = 0$
 $\mathcal{L}_{FKLMP} = \sqrt{-g_J} \left[-\frac{1}{6} \Phi \mathcal{R}_J - \delta_{\alpha \bar{\beta}} \partial_{\mu} z^{\alpha} \partial_{\nu} \bar{z}^{\bar{\beta}} g_J^{\mu\nu} - V_J \right]$.
We extend
 $J(z, \bar{z})$

with keeping the canonical kinetic term in Jordan frame 11

5. Reheating after G-inflation

HB Moghaddam, R Brandenberger, J Yokoyama, PRD95 (2017) 063529 [1612.00998]. Previously, in kinetically driven G-inflation (as well as k-inflation) Reheating was thought to occur through gravitational particle production due to the change of the geometry because there is no inflaton oscillation after inflation.

$$a(t) \propto e^{H_{\inf}t} \longrightarrow a(t) \propto t^{\frac{1}{3}}$$

This process is known to be inefficient with the reheating temperature given by

$$T_R = \frac{3N^{\frac{3}{4}}}{(32\pi^2)^{\frac{3}{4}}} \left(\frac{30}{\pi^2 g_*}\right)^{\frac{1}{4}} \frac{H_{\inf}^2}{M_G} \simeq 3.9 \times 10^6 N^{\frac{3}{4}} \left(\frac{g_*}{106.75}\right)^{-\frac{1}{4}} \left(\frac{r}{0.01}\right) \text{GeV}.$$
(Ford 1987, Kunimitsu & JY 2014)

Here N is the number of light bosonic degree of freedom (minimal coupling to gravity assumed) and r is the tensor-to-scalar ratio.

We studied effect of direct interaction with the inflaton ϕ and another scalar χ which preserves the shift symmetry of the former.

- ★ If $M \le M_G$ the direct interaction is more important than gravitational particle production and realizes a higher reheating temperature.
- * The reheating temperature can be much higher when direct interaction is dominant.

$$T_{R} = \frac{5H_{\inf}^{2}M_{G}^{2}}{32\pi^{2}(3g_{*})^{1/4}M^{3}} = 1.2 \times 10^{13} \left(\frac{g_{*}}{106.75}\right)^{-\frac{1}{4}} \left(\frac{r}{0.01}\right) \left(\frac{M}{10^{16}\,\text{GeV}}\right)^{-3} \text{GeV}$$

6. Inflationary Massive Gravity

S Kuroyanagi, C Lin, M Sasaki, S Tsujikawa, PRD97 (2018) 023516 [1710.06789]

$$S = \int d^{4}x \left[\frac{M_{P}^{2}}{2} R - \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) - \frac{9}{8} M_{P}^{2} m_{g}^{2}(\phi) \frac{\delta Z^{ij} \delta Z^{ij}}{Z^{2}} \right]$$
$$\delta Z^{ij} = Z^{ij} - 3 \frac{Z^{ik} Z^{kj}}{Z}; \quad Z = Z^{ii}$$
$$Z^{ij} = g^{\mu\nu} \partial_{\mu} \phi^{i} \partial_{\nu} \phi^{j} - \frac{g^{\mu\alpha} \partial_{\mu} \phi^{0} \partial_{\alpha} \phi^{i} g^{\nu\alpha} \partial_{\nu} \phi^{0} \partial_{\beta} \phi^{j}}{X} = h^{ij}$$

Lin & MS (2015)

14

examples

Big-Bang Nucleosynthesis (BBN) gives stringent constraints

7. Scalaron from R^2 -inflation as a Heavy Field

S Pi, YL Zhang, QG Huang, M Sasaki, [1712.09896].

• We propose the Lagrangian as the Starobinsky R^2 gravity plus a scalar field χ , nonminimally coupled to gravity

$$S_J = \int d^4x \sqrt{-g} \left\{ \frac{M_{\rm Pl}^2}{2} \left(R + \frac{R^2}{6M^2} \right) - \frac{1}{2} g^{\mu\nu} \partial_\mu \chi \partial_\nu \chi - V(\chi) - \frac{1}{2} \xi R \chi^2 \right\}$$

- V(χ) is potential for χ , which we pick for the small-field form: $V(\chi) = V_0 - \frac{1}{2}m^2\chi^2 + \cdots$
- ξ-term is the non-minimally coupled term to solve the initial condition problem.
 Another version of SSB in χ direction.

PBH as CDM from the transition stage

Inflation: summary

- scalar spectral index: $n_s < 1$ at ~ 5σ
- tensor/scalar ratio: r < 0.1 implies E_{inflation} < 10¹⁶ GeV
- simple, canonical models are on verge of extinction (m²φ² model excluded at > 2σ)
- R² (Starobinsky) model seems to fit best. But why?
- f_{NL}^{local} <O(1) suggests (effectively) single-field slow-roll but f_{NL}^{local} =O(1) or scale-dep f_{NL}^{local} =O(10) not excluded

some element of non-canonicality seems necessary

Theories/models? Observational tests/signatures?

Tensor modes to be detected ⇐⇒ multi-band GW astronomy!