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• scalar spectral index: ns<1 at ~ 5σ  

• tensor/scalar ratio: r < 0.1 implies Einflation < 1016 GeV 

• simple, canonical models are on verge of extinction         
(m2φ2 model excluded at > 2σ) 

• R2 (Starobinsky) model seems to fit best. But why?  

• fNL
local  <O(1) suggests (effectively) single-field slow-roll     

but fNL
local  =O(1) or scale-dep fNL

local  =O(10) not excluded 

some element of non-canonicality seems necessary 

Inflation: current status 

Theories/models? Observational tests/signatures? 
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1. Modified Gravity 

• “Extended mimetic gravity”                                                                 
generated general degenerate higher derivative theories by performing non-
invertible conformal transformation and analyzed their cosmological stability. 
– result supports the conjecture “all degenerate scalar-tensor theories that 

are not equivalent to Horndeski under disformal transformation are 
unstable” 

Horndeski theory 

Scalar-tensor theories without Ostrogradsky ghost (degenerate theories) 

disformally 
equivalent  to 

Hordeski 

stable unstable 

K Takahashi, T Kobayashi, JCAP 1711 (2017) 038 [1708.02951]  
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• “Matter bispectrum beyond Horndeski” + ongoing work 
 

 GW170817  GW propagation speed = c  strong constraint on MG 
– allowed class of models = DHOST/beyond Horndeski 
– any other constraint from, eg, growth rate of density perturbations? 

Modified Gravity (conti.) 
S Hirano, T Kobayashi, H Tashiro, S Yokoyama, 1801.07885 [astro-ph.CO] + …. 
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Instability of Electroweak Vacuum 

We live  
here 

Current vacuum = broken EW symmetry due to Higgs 

Higgs’ mass: 125GeV (LHC) Metastable Vacuum 

Why the current Universe can exist? 

Y Ema, K Mukaida, K Nakayama, JCAP 1712(2017) 030  [1706.08920 ] 

2. EW Vacuum Metastability and Low-scale Inflation 
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Higgs fluctuations amplify due to parametric resonance 

stability constraint: 

Inflaton-Higgs coupling: 

initial value at the onset of oscillations 

Low-scale Inflation  
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3. Probing multi-field inflation models with 
CMB spectral distortion 

CMB μ distortion can probe primordial power spectrum on small scales. 
K Kainulainen, J Leskinen, S Nurmi, T Takahashi, JCAP1711 (2017) 002 [1707.01300] 

Histogram of prediction for the distribution of μ    

(prior on r)   

Scales of 50/Mpc < k < 104 /Mpc can be probed. 

(all configurations are compatible with Planck constraints on ns, α, β) 
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4. Pole inflation in Jordan frame supergravity 
K Saikawa, M Yamaguchi, Y Yamashita, D Yoshida, JCAP 1801 (2018) 031 [1709.03440]. 

 The models favored by the current observations  
    (Starobinsky model, Higgs inflation, αattractor)  
    can be understood in a unified way as pole inflation. 
 

 The non-minimal coupling to gravity (R) may (easily) lead to this kind of pole    
    structure of kinetic term after conformal transformation to Einstein frame.  
 

 We simply impose the canonical kinetic term of a scalar field in the Jordan    
    frame like Ferrara et al. (dubbed FKLMP model). 
 

 We have shown that, in the FKLMP model, the relation between the Kahler  
    potential and the frame function is uniquely determined by imposing that    
    a scalar field has the canonical kinetic term and that a frame function consists  
    only of a holomorphic term for symmetry breaking terms. 
 

 We have relaxed this latter condition and discussed a wider class of models. 
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Pole inflation 

  K(ρ) has a pole at ρ= 0 in Laurent series : 

  V(ρ) is regular at ρ= 0 : 

Canonically normalized field φ 

(asymptotically flat) 

Primordial perturbations : 

ap dependence appears only in r. 

Though subleading terms yield higher order corrections, 
the leading order predictions do not depend on the details.  

α attractors  p=2, a2 = 3α/2 

(Galante et al.,  Broy et al., Terada.) 

By canonically normalizing a field, the potential is effectively stretched. 
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FKLMP model and its extension 
(Ferrara, Kallosh, Linde, Marrani, Van Proeyen 2010) 

Inflation models in Jordan frame supergravity with the canonical kinetic term 

Kahler potential:  

(special relation between K & Φ) 

Frame function: 

with holomorphic 

We extend 

with keeping the canonical kinetic term in Jordan frame 

Equivalent under imposing  
the canonical kinetic term 
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5. Reheating after G-inflation 
Previously, in kinetically driven G-inflation (as well as k-inflation)  Reheating was thought 
to occur through gravitational particle production due to the change of the geometry 
because there is no inflaton oscillation after inflation. 
  ∝ inf( ) H ta t e ∝

1
3( )a t t

This process is known to be inefficient with the reheating temperature given by 
 
 
 
Here N is the number of light bosonic degree of freedom (minimal coupling to gravity  
assumed) and r is the tensor-to-scalar ratio. 

(Ford 1987, Kunimitsu & JY 2014) 

We studied effect of direct interaction with the inflaton      and another scalar 
which preserves the shift symmetry of the former. 

φ χ

Mode function satisfies 

HB Moghaddam, R Brandenberger, J Yokoyama, PRD95 (2017) 063529 [1612.00998]. 
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direct interaction gravitational particle production 

≤ GM MIf                    the direct interaction is more important than gravitational  
particle production and realizes a higher reheating temperature. 
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The reheating temperature can be much higher when direct interaction  
is dominant. 
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6. Inflationary Massive Gravity 
S Kuroyanagi, C Lin, M Sasaki , S Tsujikawa,  PRD97 (2018) 023516 [1710.06789] 
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7. Scalaron from R2-inflation  as a Heavy Field  
 S Pi, YL Zhang, QG Huang, M Sasaki, [1712.09896]. 

• We propose the Lagrangian as the Starobinsky R2 gravity 
plus a scalar field χ, nonminimally coupled to gravity 

 

• V(χ) is potential for χ, which we pick for the small-field 
form:  
 

• ξ-term is the non-minimally 
coupled term to solve the 
initial condition problem. 
Another version of SSB in χ 
direction. 
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some element of non-canonicality seems necessary 

Inflation: summary 

Theories/models? Observational tests/signatures? 

Tensor modes to be detected          multi-band GW astronomy!  

• scalar spectral index: ns<1 at ~ 5σ  

• tensor/scalar ratio: r < 0.1 implies Einflation < 1016 GeV 

• simple, canonical models are on verge of extinction         
(m2φ2 model excluded at > 2σ) 

• R2 (Starobinsky) model seems to fit best. But why?  

• fNL
local  <O(1) suggests (effectively) single-field slow-roll     

but fNL
local  =O(1) or scale-dep fNL

local  =O(10) not excluded 
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