Updated observational constraints on quintessence dark energy models

Jean-Baptiste Durrive C-lab, Nagoya University

J.-B. D, J. Ooba, K. Ichiki, and N. Sugiyama Phys. Rev. D 97, 043503

Why does the Universe accelerate? Exhaustive study and challenge for the future Symposium at Tohoku University, 10-12 Feb 2018 • GW170817 favors simplest DE models

Minimally coupled scalar field
$$S = \int d^4x \sqrt{-g} \left[\frac{M_{\rm pl}^2}{2} R - \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \right] + S_m$$

Vuintaaanaa

Quintessence models can be classified depending on evolution of

$$w \equiv \frac{P_{\phi}}{\rho_{\phi}} = \frac{\frac{1}{2}\dot{\phi}^2 - V(\phi)}{\frac{1}{2}\dot{\phi}^2 + V(\phi)}$$

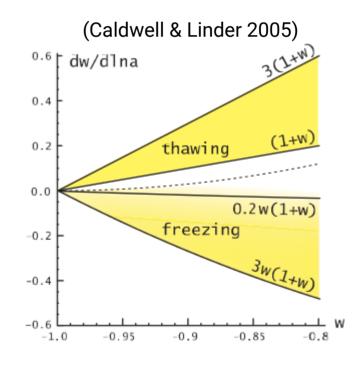
- \rightarrow Two classes: Freezing & Thawing
- Here we consider approximate analytic w(a) for models:

1) Tracking Freezing

2) Scaling Freezing

3) Thawing

• This analysis covers most quintessence potentials



Method

We consider the same approach as T.Chiba, A.De Felice, S.Tsujikawa (2013)

But:

- we use the Boltzmann code CLASS & MonteCarlo code MontePython
- with the latest data:

Planck 2015: Temperature and Polarization TT, TE & EE Planck 2015: Lensing Supernovae : SDSS-II/SNLS3 Joint Light-curve Analysis (JLA) BAO : SDSS7 MGS, 6dFGS, BOSS LOWZ, BOSS CMASS

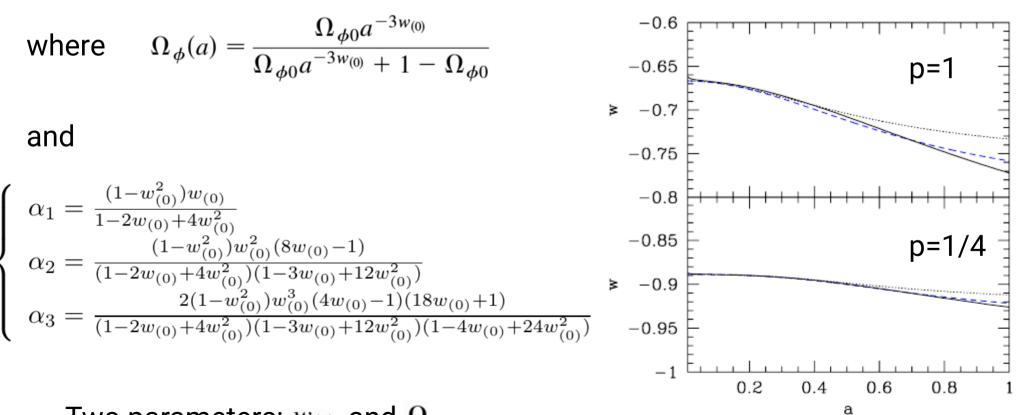
- we let H₀ vary (important given the current tension on its precise value...)
- and considered neutrinos

Note:

- For Quintessence we have the prior $w\geq -1$
- But we also extend the analysis to any value

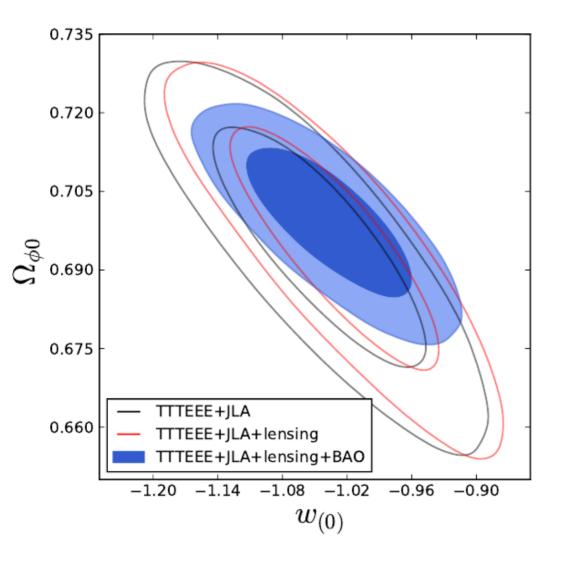
(e.g. Dutta, Saridakis, Scherrer 2009 Chiba, Dutta, Scherrer 2009)

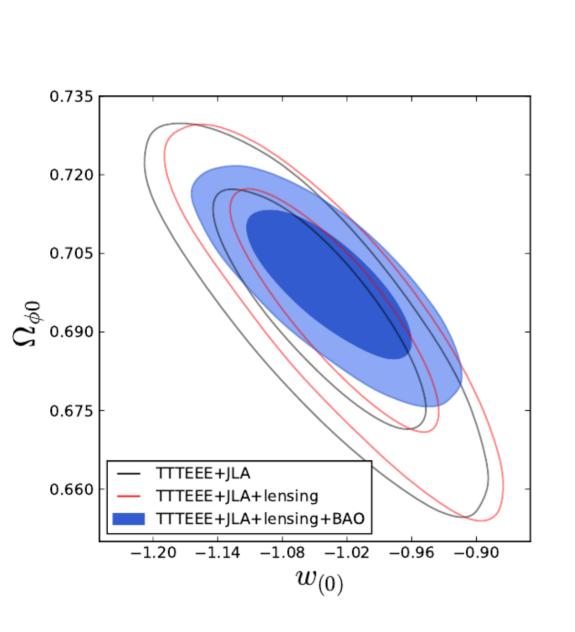
- Inverse power-law potential $V(\phi) = M^{4+p} \phi^{-p}$ (p > 0) (e.g. Binetruy 1999)
- EoS: $w(a) = w_{(0)} + \alpha_1 \Omega_{\phi}(a) + \alpha_2 \Omega_{\phi}(a)^2 + \alpha_3 \Omega_{\phi}(a)^3$



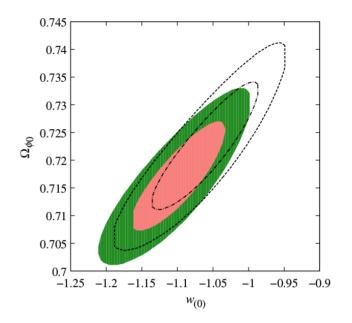
Chiba 2010

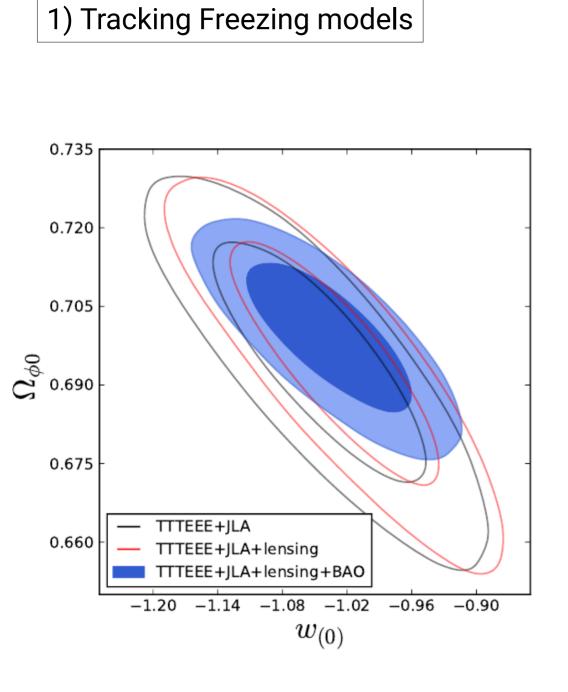
 \rightarrow Two parameters: $w_{(0)}$ and $\Omega_{\phi 0}$



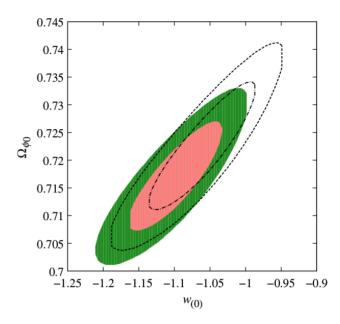


Note: Chiba et al 2013 obtained

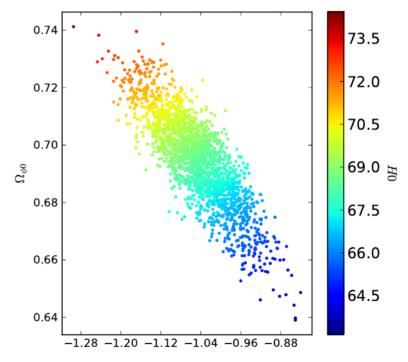




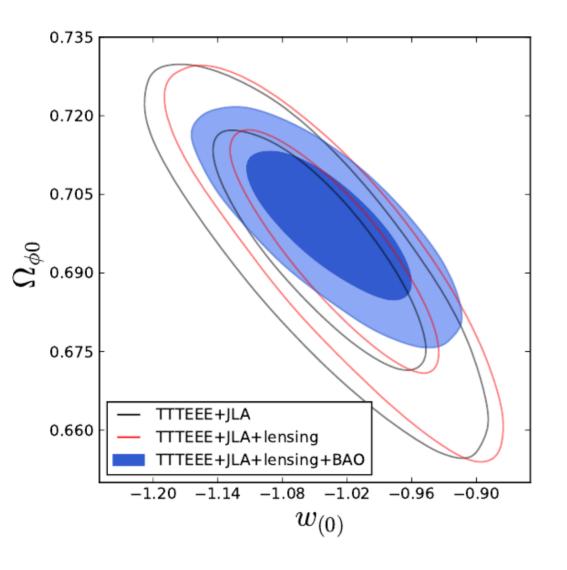
Note: Chiba et al 2013 obtained



Difference = because we let Ho vary



 $w_{(0)}$



Constraints: (95% C.L.)

With prior: $0.675 < \Omega_{\phi 0} < 0.703$ $-1 < w_{(0)} < -0.923$

(corresponds to p < 0.17)

No prior: $0.680 < \Omega_{\phi 0} < 0.718$ $-1.141 < w_{(0)} < -0.933$

2) Scaling Freezing models

• Double exponential potential: $V(\phi) = V_1 e^{-\lambda_1 \phi/M_{pl}} + V_2 e^{-\lambda_2 \phi/M_{pl}}$ with $\lambda_1 \gg 1$ and $\lambda_2 \ll 1$ (e.g. Barreiro et al 2000) Equation of state:

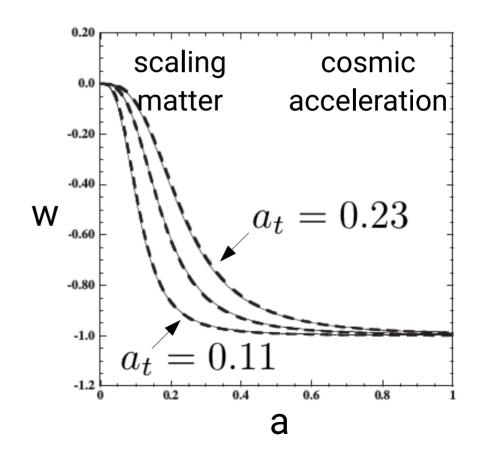
(Linder & Huterer 2005)

$$w(a) = -1 + \frac{1}{1 + (a/a_t)^{1/\tau}}$$

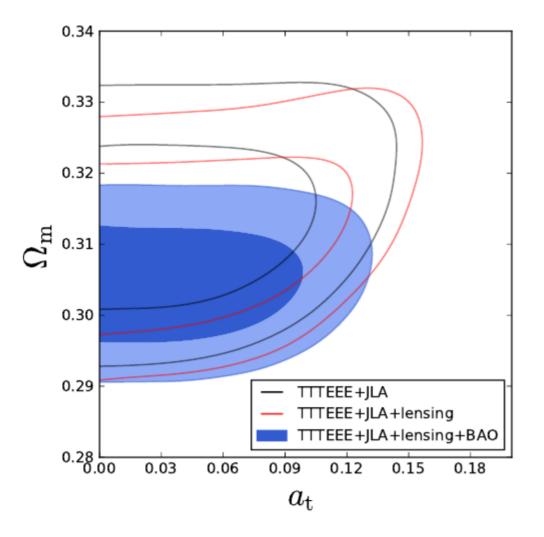
with

 a_t scale factor at transition $\tau \simeq 0.33$ thickness of transition

→ Two parameters: a_t and Ω_{m0}



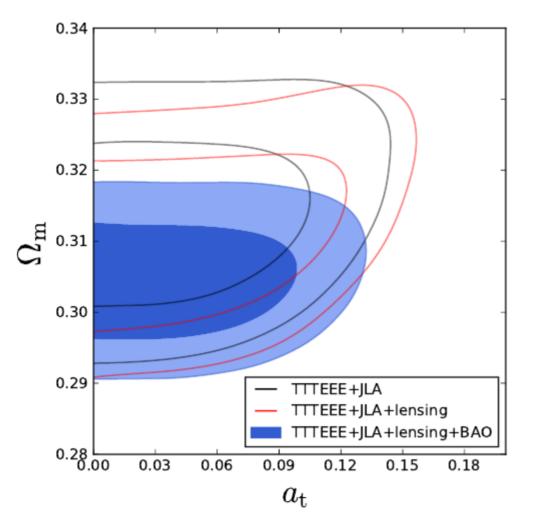
2) Scaling Freezing models



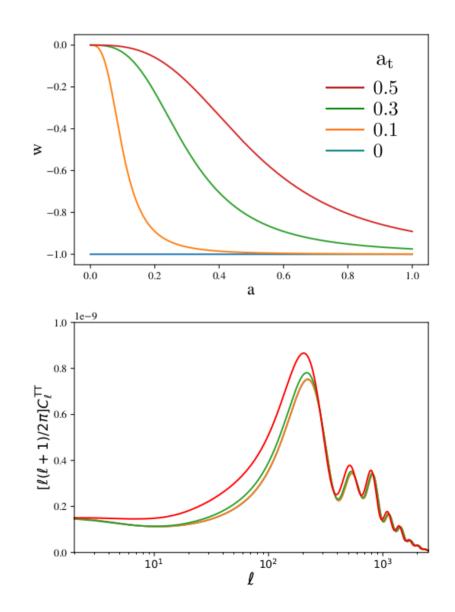
Constraint : (95% C.L.) $a_t < 0.11$ i.e. $z_t > 8.1$

Transition to EoS close to w = -1 needs to occur at a very early cosmological epoch

2) Scaling Freezing models



Interpretation: Large $a_t \rightarrow early ISW$ effect



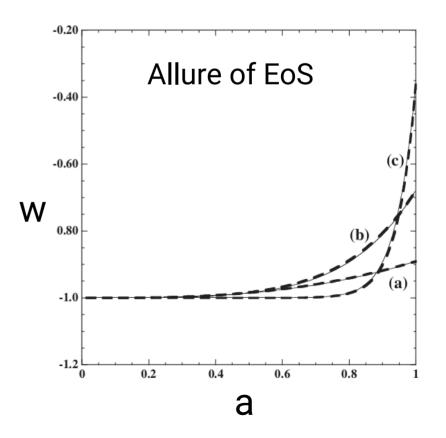
3) Thawing models

- Hilltop potential: $V(\phi) = \Lambda^4 [1 + \cos(\phi/f)]$ (e.g. pseudo-Nambu-Goldstone boson or axions)
- EoS: (Chiba 2009) $w(a) = -1 + (1 + w_0)a^{3(K-1)} \left[\frac{(K - F(a))(F(a) + 1)^K + (K + F(a))(F(a) - 1)^K}{(K - \Omega_{\phi 0}^{-1/2})(\Omega_{\phi 0}^{-1/2} + 1)^K + (K + \Omega_{\phi 0}^{-1/2})(\Omega_{\phi 0}^{-1/2} - 1)^K} \right]^2$

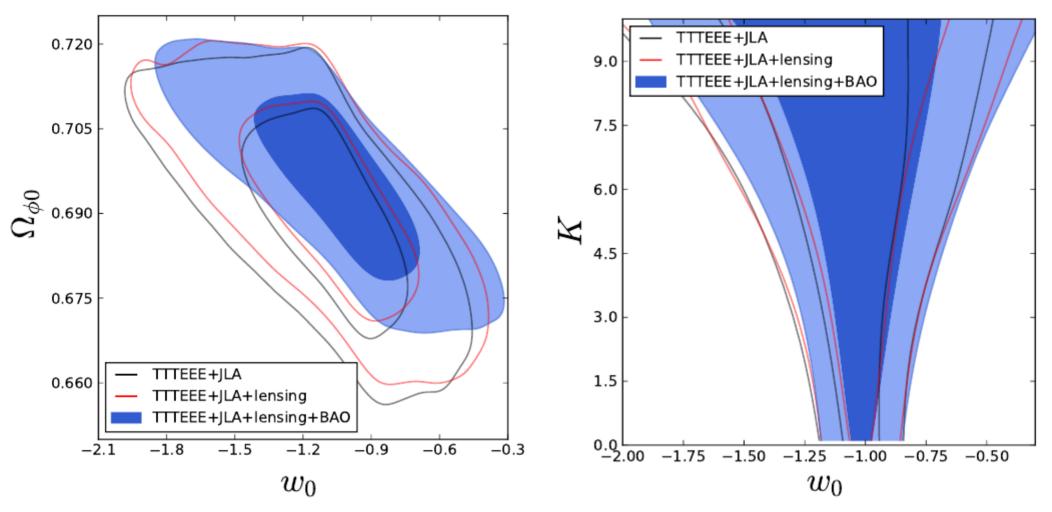
where
$$F(a) = \sqrt{1 + (\Omega_{\phi 0}^{-1} - 1)a^{-3}}$$

and
$$K = \sqrt{1 - \frac{4M_{pl}^2 V_{,\phi\phi}(\phi_i)}{3V(\phi_i)}}$$

- → Three parameters: w_0 , $\Omega_{\phi 0}$ and K
- Constraints with prior 0.1 < K < 10for approximate w(a) to be reliable



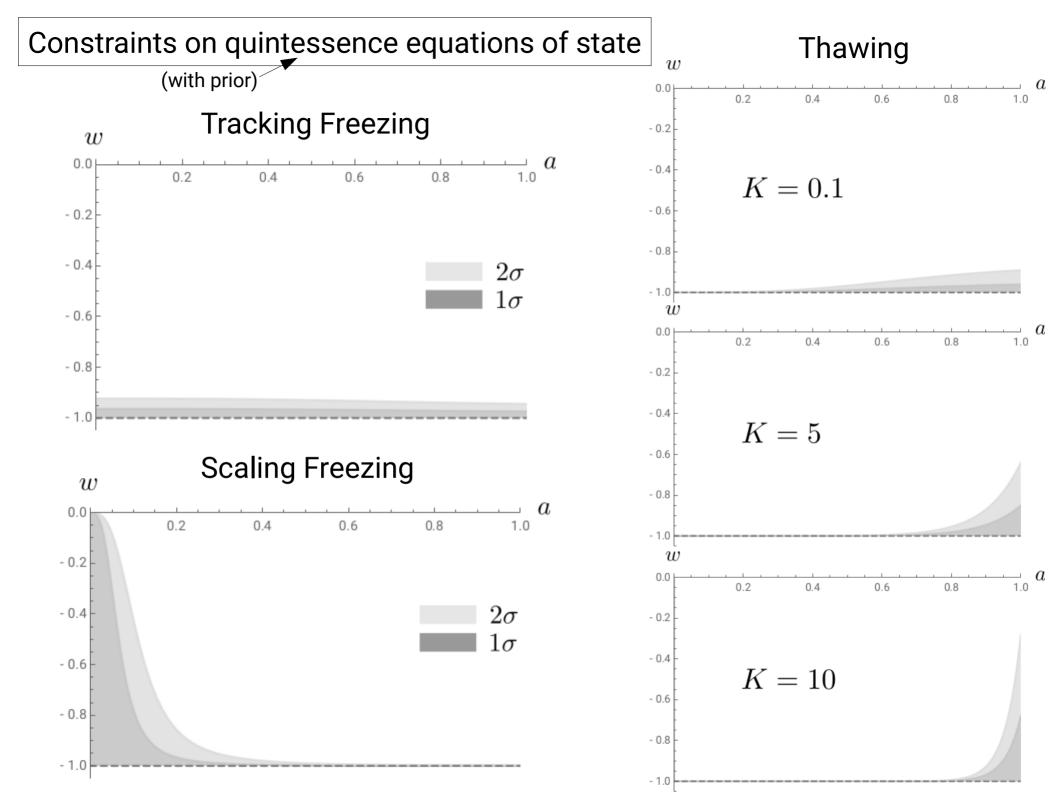
3) Thawing models



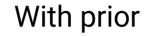
• Constraints: (95% C.L.)

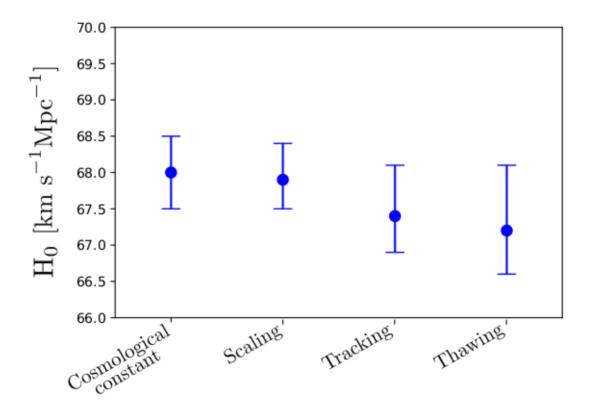
No prior:With
$$0.674 < \Omega_{\phi 0} < 0.719$$
0.6
 0.6 $-1.69 < w_0 < -0.46$ -0.46

With prior: $0.670 < \Omega_{\phi 0} < 0.704$ $-1 < w_0 < -0.471$



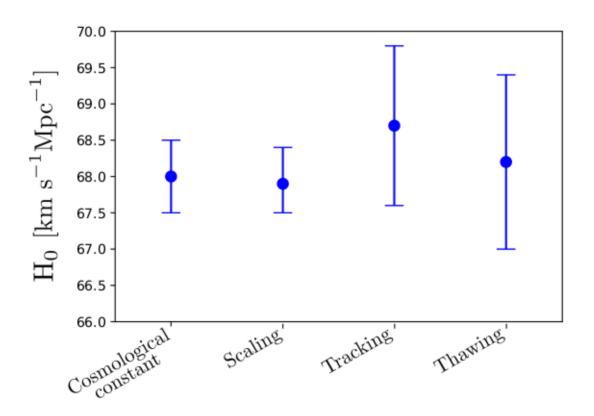
Constraints on Hubble constant





Does not remedy the tension between the local measurement and Planck results

Constraints on Hubble constant



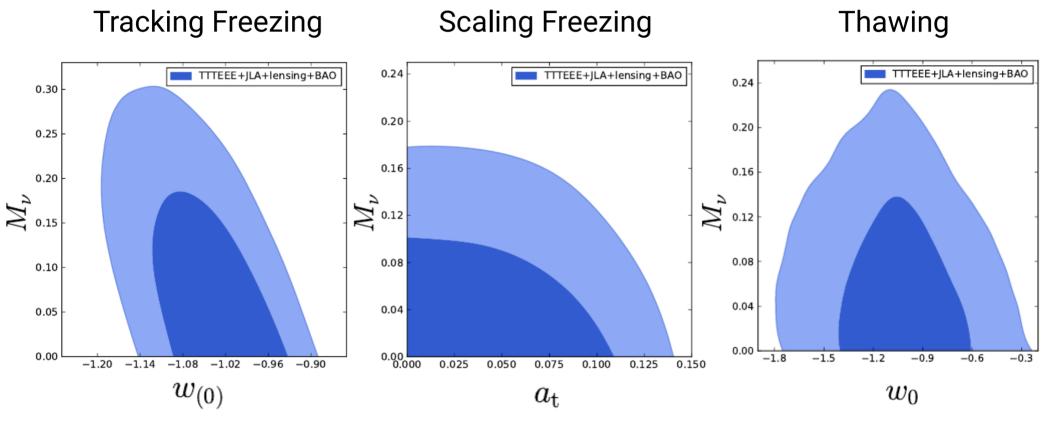
Without prior

Does not remedy the tension between the local measurement and Planck results

Constraints on massive neutrinos

In the above we assumed massless neutrinos.

Considering massive neutrinos (total mass M_{ν}) we get:



• Constraints: (95% C.L.)

 $M_{
u} < 0.25 \text{ eV}$ (no prior) $M_{
u} < 0.15 \text{ eV}$ (with prior)

 $M_{\nu} < 0.16 \text{ eV}$

 $M_{\nu} < 0.17 \text{ eV}$ (no prior) $M_{\nu} < 0.15 \text{ eV}$ (with prior) Thank you for your attention