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Fig. 1. The cusp-core problem. (Left) An optical image of the galaxy F568-3 (small inset, from the Sloan Digital Sky Survey) is superposed on the the dark matter
distribution from the “Via Lactea” cosmological simulation of a Milky Way-mass cold dark matter halo (Diemand et al. 2007). In the simulation image, intensity encodes the
square of the dark matter density, which is proportional to annihilation rate and highlights low mass substructure. (Right) The measured rotation curve of F568-3 (points)
compared to model fits assuming a cored dark matter halo (blue solid curve) or a cuspy dark matter halo with an NFW profile (red dashed curve, concentration c = 9.2,
V200 = 110 km s�1). The dotted green curve shows the contribution of baryons (stars+gas) to the rotation curve, which is included in both model fits. An NFW halo
profile overpredicts the rotation speed in the inner few kpc. Note that the rotation curve is measured over roughly the scale of the 40 kpc inset in the left panel.

typical for galaxy mass halos. When normalized to match the
observed rotation at large radii, the NFW halo overpredicts
the rotation speed in the inner few kpc, by a factor of two or
more.

Early theoretical discussions of the cusp-core problem de-
voted considerable attention to the predicted central slope of
the density profiles and to the e↵ects of finite numerical reso-
lution and cosmological parameter choices on the simulation
predictions (see Ludlow et al. 2013 for a recent, state-of-the-
art discussion). However, the details of the profile shape are
not essential to the conflict; the basic problem is that CDM
predicts too much dark matter in the central few kpc of typical
galaxies, and the tension is evident at scales where vc(r) has
risen to ⇠ 1/2 of its asymptotic value (see, e.g., Alam, Bul-
lock, & Weinberg 2002; Kuzio de Naray & Spekkens 2011).
On the observational side, the most severe discrepancies be-
tween predicted and observed rotation curves arise for fairly
small galaxies, and early discussions focused on whether beam
smearing or non-circular motions could artificially suppress
the measured vc(r) at small radii. However, despite uncer-
tainties in individual cases, improvements in the observations,
sample sizes, and modeling have led to a clear overall picture:
a majority of galaxy rotation curves are better fit with cored
dark matter profiles than with NFW-like dark matter profiles,
and some well observed galaxies cannot be fit with NFW-like
profiles, even when one allows halo concentrations at the low
end of the theoretically predicted distribution and accounts for
uncertainties in modeling the baryon component (e.g., Kuzio
de Naray et al. 2008). Resolving the cusp-core problem there-
fore requires modifying the halo profiles of typical spiral galax-
ies away from the profiles that N-body simulations predict for
collisionless CDM.

Figure 2 illustrates the “missing satellite” problem. The
left panel shows the projected dark matter density distribu-
tion of a 1012M

�

CDM halo formed in a cosmological N-body
simulation. Because CDM preserves primordial fluctuations
down to very small scales, halos today are filled with enormous
numbers of subhalos that collapse at early times and preserve
their identities after falling into larger systems. Prior to 2000,
there were only nine dwarf satellite galaxies known within the

⇠ 250 kpc virial radius of the Milky Way halo (illustrated
in the right panel), with the smallest having stellar velocity
dispersions ⇠ 10 km s�1. Klypin et al. (1999) and Moore et
al. (1999b) predicted a factor ⇠ 5 � 20 more subhalos above
a corresponding velocity threshold in their simulated Milky
Way halos. Establishing the “correspondence” between satel-
lite stellar dynamics and subhalo properties is a key technical
point (Stoehr et al. 2002), which we will return to below, but
a prima facie comparison suggests that the predicted satellite
population far exceeds the observed one.

Fortunately (or perhaps unfortunately), the missing satel-
lite problem seems like it could be solved fairly easily by
baryonic physics. In particular, the velocity threshold at
which subhalo and dwarf satellite counts diverge is close to
the ⇠ 30 km s�1 value at which heating of intergalactic gas
by the ultraviolet photoionizing background should suppress
gas accretion onto halos, which could plausibly cause these
halos to remain dark (Bullock, Kravtsov, & Weinberg 2000;
Benson et al. 2002; Somerville 2002). Alternatively, super-
novae and stellar winds from the first generation of stars could
drive remaining gas out of the shallow potential wells of these
low mass halos. Complicating the situation, searches using
the Sloan Digital Sky Survey have discovered another ⇠ 15
“ultra-faint” satellites with luminosities of only 103 � 105L

�

(e.g., Willman et al. 2005; Belokurov et al. 2007). The high-
latitude SDSS imaging covered only ⇠ 20% of the sky, and
many of the newly discovered dwarfs are so faint that they
could only be seen to 50-100 kpc (Koposov et al. 2008; Walsh
et al. 2009), so extrapolating to the full volume within the
Milky Way virial radius suggests a population of several hun-
dred faint dwarf satellites (Tollerud et al. 2008). Estimates
from stellar dynamics imply that the mass of dark matter in
the central 0.3 kpc of the host subhalos is M0.3 ⇡ 107M

�

across an enormous range of luminosities, L ⇠ 103 � 107L
�

(encompassing the “classical” dwarf spheroidals as well as the
SDSS dwarfs), which suggests that the mapping between halo
mass and luminosity becomes highly stochastic near this mass
threshold (Strigari et al. 2008). The luminosity function of
the faint and ultra-faint dwarfs can be explained by semi-
analytic models invoking photoionization and stellar feedback
(e.g., Koposov et al. 2009; Macciò et al. 2009), though the e�-
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Three perspectives 

i) Probe of string axiverse: New window

iii) Based on basic physics

ii) GW emission, new observational tool. 
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Scalar potential of axion 

Potential can be more flatten than

Dubovski et al. (10), Nomura, Watari&Yamazaki(17)

continuous shift sym.
φ → φ + c n ∈ Z

φ → φ + 2πn/f
NP effects 

e.g. instanton effects

i) Superposition of multiple cosine terms 
Kim, Nilles, & Peloso (04)e.g., alignment mechanism 

ii) Non-minimal coupling w/gravity 
→ α attractor model 

iii) Dilute instanton gas approximation 

Kallosh & Linde + (13, 14,…)

cosφ/f

V(φ) ~ Λ4 cosφ/f
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1. Axion slowly rolls in plateau

2. Onset of oscillation  Hosc/m < 1
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FIG. 1: The plot shows the potential shape of the ↵ attractor type
potential for different values of c.

�̃(x) = C1+C2 x1�3p. Meanwhile, around the bottom of the
potential with |�̃| ⌧ 1, Eq. (1) can be also solved analytically.
However, in general, Eq. (1) can be solved only numerically
in the intermediate range.

Notice that when � is located at the plateau region at
the onset of oscillation, the oscillation does not necessarily
take place around x ' 1 or H ' m. As an example,
we consider an ↵ attractor type potential given by Ṽ (�̃) =

[1 + c(tanh �̃)2]�1 ⇥ (tanh �̃)2/2 with c � 0. It should be,
however, noted that the resonance instability generically takes
place, as long as the scalar potential satisfies the conditions i)
and ii). This potential is shown in Figure 1 for different val-
ues of c. For �̃ ⌧ 1, the second derivative of the potential is
given by Ṽ

�̃�̃

= 1 � 2(2 + 3c)�̃2 + O(�̃4). The curvature of
the potential becomes smaller for a larger value of c around
the bottom of the potential. Figure 2 shows that the oscilla-
tion starts at x

osc

� 1, when we choose the initial condition
�̃
i

= 5 and �̃
x,i

= �1, starting at the plateau region. (When
the plateau is wide enough, the evolution does not much de-
pend on the initial velocity because of the over damping.)
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FIG. 2: This plot shows the time evolution of �̃ in RD.

Let us consider the case where � is a ULA. Assuming that �
starts to oscillate before the matter radiation equality, we can
estimate the decay constant by equating the energy density
of the radiation ⇢eq

�

with that of dark matter ⇢eq
m

= ⇢eq
�

/�
�

,
where �

�

denotes the fraction of the ULA among the total

dark matter, as
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osc

1017GeV , (2)

where the quantities with the index eq denote those at the
equal time and the quantities with the index osc denote those
at the onset of the oscillation. Here, taking into account that
the kinetic energy and the potential energy are comparable at
the onset of the oscillation, we used ⇢osc

�

' 2V
osc

' (mf)2.
Thus, once x

osc

is determined by solving Eq. (1) and m is
given, the decay constant f should be given by Eq. (2).

Parametric resonance instability.– Next, we study the evo-
lution of the inhomogeneous modes. The perturbed KG equa-
tion for the axion is given by '̈+3H'̇+(k/a)2'+V

��

' = 0,
where ' is the perturbed axion field and we neglected the met-
ric perturbations. According to our numerical analysis, the
metric perturbation does not play a crucial role in the early
stage of the resonance instability, where the linear analysis
can apply. Again, we can rewrite the perturbed KG equation
for '̃ ⌘ '/f in a dimension free form

d2'̃
k

dx2
+ 3

p

x

d'̃
k

dx
+ p2k̃2

⇣x
i

x

⌘2p
'̃
k

+ p2Ṽ
�̃�̃

'̃
k

= 0 , (3)

where we used k/(am) = k̃ (x
i

/x)p with k̃ ⌘ k/(a
i

m). De-
pending on the choice of the initial time, the corresponding
wavenumber k̃ varies, while k/a is independent of the choice
of the initial time. Here, we choose x

i

= 1/10.
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FIG. 3: These plots show the time evolution of '̃k with k̃ = 10 under
the initial condition �̃i = 5. The upper panel shows the one for RD
and the bottom panel shows the one for MD.

Fig. 3 shows the time evolution of '̃
k

with k̃ = 10
for various values of c during RD (up) and MD (bottom).

Soda & Y.U.(17) RD

Onset of oscillation is not m~ H, but delayed!
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Figure 1: This plot shows the scalar potential V and the second derivative with respect to φ.
Here, f and ma are set to 1. The dotted line shows the quadratic potential, to which V approaches
in the limit φ ≪ 1.

2.1 α attractor ultralight axion

We consider an ultralight axion whose scalar potential has a flat plateau, e.g.,

V (φ) =
1

2
f2m2

a

(
1− e−

φ
f

)2
, (2.1)

which was dubbed as the α-β model in Ref. [1]. For φ/f ≪ 1, the scalar potential ap-

proaches to the quadratic potential as for the standard axion, whose scalar potential is

given by

V (φ) = f2m2
a

(
1− cos

φ

f

)
. (2.2)

For φ/f > ln 2 ≃ 0.69, the curvature of the scalar potential becomes negative and in the

limit φ/f ≫ 1, the potential becomes flat.

In this paper, we will show that an axion model with a flat plateau rather generically

undergoes an unstable growth due to the parametric resonance. We will show the resonance

instability, considering the potential (2.2), but the parametric instability takes place rather

generically, e.g., in the models

V (φ) =
(maf)2

2

(tanh φ
f )

2

(1 + tanh φ
f )

n
, (2.3)

and

V (φ) =
(maf)2

2

(tanh φ
f )

2

1 + c(tanh φ
f )

2n
, (2.4)

with c ≥ 0.
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1. Axion slowly rolls in plateau

2. Onset of oscillation  Hosc/m < 1

3. Exponential growth due to PR

if Hosc/m << 1 No disturbance due to cosmic exp.
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Parametric resonance

“Parametric resonance instability”

Repeat: Up & Down in a half of osc. period
→ Periodic ext. force
→ Enhancing the amplitude

Mathieu equation

3

The parametric resonance is much less efficient in MD for
this wavenumber, but this is partially because the resonance
wavenumbers differ between RD and MD. This can be ex-
plicitly seen in Fig. 4, which shows the time evolution of '̃

k

for different values of the wavenumbers k̃. The modes with
k̃ = 10�1 and k̃ = 10�1/2 got slightly enhanced just after the
onset of the oscillation due to the tachyonic instability. How-
ever, this is not very efficient, because the second derivative
of the potential oscillates taking both positive and negative
values. (In Ref. [7], a role of the tachyonic instability was
discussed in detail for another model.)
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FIG. 4: These plots show the time evolutions of '̃k during RD (up)
and MD (bottom) for different values of the wavenumbers k̃: k̃ =
10�1 (Purple), k̃ = 10�1/2 (Blue), k̃ = 1 (Light blue), k̃ = 101/2

(Green), k̃ = 10 (Red), k̃ = 103/2 (Magenta), k̃ = 102 (Orange),
and k̃ = 105/2 (Yellow). Here, we choose c = 0.

In order to understand the instability more intuitively, here
let us analyze the equation (3), neglecting the Hubble fric-
tion. Around the bottom of the potential, i.e., �̃ < 1, the
homogeneous mode of the axion oscillates with the frequency
|Ṽ

�̃�̃

|1/2 ' 1 and the solution is given by �̃ = �̃⇤ cosx. Using
this solution, Eq. (3) is given by Mathieu equation as

d2

dx2
'̃+ (A� 2q cos 2x)'̃ = 0 , (4)

where A and q are defined as

A ⌘ 1

4

"✓
k

ma
osc

◆2

+ 1� (2 + 3c)�̃2
⇤

#
, q ⌘ 2 + 3c

8
�̃2
⇤.

Here, a
osc

denotes the scale factor at around the onset of the
oscillation. The parametric resonance takes place for the nar-
row band A ' n2, where n is an integer. The width of the res-

onance band is proportional to (q/A)n. The dominant grow-
ing mode is the n = 1 mode and the growth rate with '̃ / e�x

is given by � ' q/2 = (2 + 3c)�̃2
⇤/16. This explains the c

dependence of the growth rate in Fig. 3, where a larger c leads
to a more rapid growth after the onset of the oscillation. No-
tice also that the resonance band becomes wider for a larger
c as shown in Fig. 3. The resonance wavenumbers can be
predicted from the first resonance band of Mathieu equation,
leaving aside factor deviations.

The cosmic expansion makes the parametric resonance in-
stability more inefficient mainly due to the following two ef-
fects: first, the amplitude �̃⇤ decreases due to the Hubble fric-
tion, reducing the growth rate and second, the wavenumbers
in the resonance band(s) are redshifted. When the gradient of
the potential is shallower, the velocity of the scalar field stays
smaller, making the Hubble friction more inefficient. This
is the reason why an efficient resonance instability requires
a shallower potential than the quadratic potential around the
onset of the oscillation.

When we consider a case where the oscillation starts dur-
ing RD, the redshift is less important than during MD, since
the expansion of the universe is slower. Therefore, the para-
metric resonance instability proceeds more efficiently during
RD. Meanwhile, when � is the inflaton, it has to decay until
the end of reheating for a successful transition to RD. On the
other hand, when � is not a dominant component of the uni-
verse at the onset of the instability, e.g. the ULA, which starts
the oscillation during RD, the unstable growth can continue
longer time. In Fig. 3 and Fig. 4, where we choose the initial
field value �̃

i

= 5, the parametric resonance persists suffi-
ciently long. On the other hand, when we choose a smaller
value of |�̃

i

| as an initial condition, the parametric resonance
can persist only in a shorter period, leaving only a milder en-
hancement of the fluctuation.

Jeans scale.– It is known that the ULA has an emergent
pressure on small scales and the Jeans wavenumber is given
by k

J

(a) '
p
mH a , where we used c

s

' k/(2ma) [10].
Once the ULA becomes the dominant component of the uni-
verse for a > a

eq

, the structures below the Jeans length are
smoothed out. As is shown in Fig. 4, the parametric resonance
instability takes place for the wavenumbers slightly above the
Jeans wavenumber k̃

J

(a). This can be understood as fol-
lows. The resonance wavenumber in the first band k

r

satisfies
k
r

/(ma
osc

) ' O(1). Therefore, using k
J

/(ma) ' 1/
p
x,

we find a universal relation k
r

' p
x
osc

k
J

(a
eq

). When the
scalar potential of the ULA dark matter has a shallow region,
the parametric resonance which takes place for the smaller
scales than the Jeans scale can enhance the perturbation of the
ULA before the matter-radiation equality. This may supply
the missing small scale structures, asserted in Ref. [11].

Oscillon formation and GWs emission.– When the para-
metric resonance instability persists sufficiently long, the lin-
ear perturbation ceases to be a good approximation, even if
we start with an almost homogeneous initial condition. In
Refs. [5], it was numerically shown that the long-lasting in-
stability can lead to a fragmented configuration of the oscil-
lating scalar field, dubbed as the oscillon. Since the cosmic
expansion is not crucial at the oscillon formation, clumps of

resonance band  A ~ n2 

ex. First band

3

The parametric resonance is much less efficient in MD for
this wavenumber, but this is partially because the resonance
wavenumbers differ between RD and MD. This can be ex-
plicitly seen in Fig. 4, which shows the time evolution of '̃

k

for different values of the wavenumbers k̃. The modes with
k̃ = 10�1 and k̃ = 10�1/2 got slightly enhanced just after the
onset of the oscillation due to the tachyonic instability. How-
ever, this is not very efficient, because the second derivative
of the potential oscillates taking both positive and negative
values. (In Ref. [7], a role of the tachyonic instability was
discussed in detail for another model.)
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FIG. 4: These plots show the time evolutions of '̃k during RD (up)
and MD (bottom) for different values of the wavenumbers k̃: k̃ =
10�1 (Purple), k̃ = 10�1/2 (Blue), k̃ = 1 (Light blue), k̃ = 101/2

(Green), k̃ = 10 (Red), k̃ = 103/2 (Magenta), k̃ = 102 (Orange),
and k̃ = 105/2 (Yellow). Here, we choose c = 0.

In order to understand the instability more intuitively, here
let us analyze the equation (3), neglecting the Hubble fric-
tion. Around the bottom of the potential, i.e., �̃ < 1, the
homogeneous mode of the axion oscillates with the frequency
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this solution, Eq. (3) is given by Mathieu equation as

d2

dx2
'̃+ (A� 2q cos 2x)'̃ = 0 , (4)

where A and q are defined as

A ⌘ 1

4

"✓
k

ma
osc

◆2

+ 1� (2 + 3c)�̃2
⇤

#
, q ⌘ 2 + 3c

8
�̃2
⇤.

Here, a
osc

denotes the scale factor at around the onset of the
oscillation. The parametric resonance takes place for the nar-
row band A ' n2, where n is an integer. The width of the res-

onance band is proportional to (q/A)n. The dominant grow-
ing mode is the n = 1 mode and the growth rate with '̃ / e�x

is given by � ' q/2 = (2 + 3c)�̃2
⇤/16. This explains the c

dependence of the growth rate in Fig. 3, where a larger c leads
to a more rapid growth after the onset of the oscillation. No-
tice also that the resonance band becomes wider for a larger
c as shown in Fig. 3. The resonance wavenumbers can be
predicted from the first resonance band of Mathieu equation,
leaving aside factor deviations.

The cosmic expansion makes the parametric resonance in-
stability more inefficient mainly due to the following two ef-
fects: first, the amplitude �̃⇤ decreases due to the Hubble fric-
tion, reducing the growth rate and second, the wavenumbers
in the resonance band(s) are redshifted. When the gradient of
the potential is shallower, the velocity of the scalar field stays
smaller, making the Hubble friction more inefficient. This
is the reason why an efficient resonance instability requires
a shallower potential than the quadratic potential around the
onset of the oscillation.

When we consider a case where the oscillation starts dur-
ing RD, the redshift is less important than during MD, since
the expansion of the universe is slower. Therefore, the para-
metric resonance instability proceeds more efficiently during
RD. Meanwhile, when � is the inflaton, it has to decay until
the end of reheating for a successful transition to RD. On the
other hand, when � is not a dominant component of the uni-
verse at the onset of the instability, e.g. the ULA, which starts
the oscillation during RD, the unstable growth can continue
longer time. In Fig. 3 and Fig. 4, where we choose the initial
field value �̃
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= 5, the parametric resonance persists suffi-
ciently long. On the other hand, when we choose a smaller
value of |�̃
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| as an initial condition, the parametric resonance
can persist only in a shorter period, leaving only a milder en-
hancement of the fluctuation.

Jeans scale.– It is known that the ULA has an emergent
pressure on small scales and the Jeans wavenumber is given
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, the structures below the Jeans length are
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the parametric resonance which takes place for the smaller
scales than the Jeans scale can enhance the perturbation of the
ULA before the matter-radiation equality. This may supply
the missing small scale structures, asserted in Ref. [11].
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metric resonance instability persists sufficiently long, the lin-
ear perturbation ceases to be a good approximation, even if
we start with an almost homogeneous initial condition. In
Refs. [5], it was numerically shown that the long-lasting in-
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this wavenumber, but this is partially because the resonance
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plicitly seen in Fig. 4, which shows the time evolution of '̃
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for different values of the wavenumbers k̃. The modes with
k̃ = 10�1 and k̃ = 10�1/2 got slightly enhanced just after the
onset of the oscillation due to the tachyonic instability. How-
ever, this is not very efficient, because the second derivative
of the potential oscillates taking both positive and negative
values. (In Ref. [7], a role of the tachyonic instability was
discussed in detail for another model.)
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FIG. 4: These plots show the time evolutions of '̃k during RD (up)
and MD (bottom) for different values of the wavenumbers k̃: k̃ =
10�1 (Purple), k̃ = 10�1/2 (Blue), k̃ = 1 (Light blue), k̃ = 101/2

(Green), k̃ = 10 (Red), k̃ = 103/2 (Magenta), k̃ = 102 (Orange),
and k̃ = 105/2 (Yellow). Here, we choose c = 0.

In order to understand the instability more intuitively, here
let us analyze the equation (3), neglecting the Hubble fric-
tion. Around the bottom of the potential, i.e., �̃ < 1, the
homogeneous mode of the axion oscillates with the frequency
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Here, a
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denotes the scale factor at around the onset of the
oscillation. The parametric resonance takes place for the nar-
row band A ' n2, where n is an integer. The width of the res-

onance band is proportional to (q/A)n. The dominant grow-
ing mode is the n = 1 mode and the growth rate with '̃ / e�x

is given by � ' q/2 = (2 + 3c)�̃2
⇤/16. This explains the c

dependence of the growth rate in Fig. 3, where a larger c leads
to a more rapid growth after the onset of the oscillation. No-
tice also that the resonance band becomes wider for a larger
c as shown in Fig. 3. The resonance wavenumbers can be
predicted from the first resonance band of Mathieu equation,
leaving aside factor deviations.

The cosmic expansion makes the parametric resonance in-
stability more inefficient mainly due to the following two ef-
fects: first, the amplitude �̃⇤ decreases due to the Hubble fric-
tion, reducing the growth rate and second, the wavenumbers
in the resonance band(s) are redshifted. When the gradient of
the potential is shallower, the velocity of the scalar field stays
smaller, making the Hubble friction more inefficient. This
is the reason why an efficient resonance instability requires
a shallower potential than the quadratic potential around the
onset of the oscillation.

When we consider a case where the oscillation starts dur-
ing RD, the redshift is less important than during MD, since
the expansion of the universe is slower. Therefore, the para-
metric resonance instability proceeds more efficiently during
RD. Meanwhile, when � is the inflaton, it has to decay until
the end of reheating for a successful transition to RD. On the
other hand, when � is not a dominant component of the uni-
verse at the onset of the instability, e.g. the ULA, which starts
the oscillation during RD, the unstable growth can continue
longer time. In Fig. 3 and Fig. 4, where we choose the initial
field value �̃

i

= 5, the parametric resonance persists suffi-
ciently long. On the other hand, when we choose a smaller
value of |�̃

i

| as an initial condition, the parametric resonance
can persist only in a shorter period, leaving only a milder en-
hancement of the fluctuation.

Jeans scale.– It is known that the ULA has an emergent
pressure on small scales and the Jeans wavenumber is given
by k

J

(a) '
p
mH a , where we used c

s

' k/(2ma) [10].
Once the ULA becomes the dominant component of the uni-
verse for a > a

eq

, the structures below the Jeans length are
smoothed out. As is shown in Fig. 4, the parametric resonance
instability takes place for the wavenumbers slightly above the
Jeans wavenumber k̃

J

(a). This can be understood as fol-
lows. The resonance wavenumber in the first band k

r

satisfies
k
r

/(ma
osc

) ' O(1). Therefore, using k
J

/(ma) ' 1/
p
x,

we find a universal relation k
r

' p
x
osc

k
J

(a
eq

). When the
scalar potential of the ULA dark matter has a shallow region,
the parametric resonance which takes place for the smaller
scales than the Jeans scale can enhance the perturbation of the
ULA before the matter-radiation equality. This may supply
the missing small scale structures, asserted in Ref. [11].

Oscillon formation and GWs emission.– When the para-
metric resonance instability persists sufficiently long, the lin-
ear perturbation ceases to be a good approximation, even if
we start with an almost homogeneous initial condition. In
Refs. [5], it was numerically shown that the long-lasting in-
stability can lead to a fragmented configuration of the oscil-
lating scalar field, dubbed as the oscillon. Since the cosmic
expansion is not crucial at the oscillon formation, clumps of
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Fig. 1. The cusp-core problem. (Left) An optical image of the galaxy F568-3 (small inset, from the Sloan Digital Sky Survey) is superposed on the the dark matter
distribution from the “Via Lactea” cosmological simulation of a Milky Way-mass cold dark matter halo (Diemand et al. 2007). In the simulation image, intensity encodes the
square of the dark matter density, which is proportional to annihilation rate and highlights low mass substructure. (Right) The measured rotation curve of F568-3 (points)
compared to model fits assuming a cored dark matter halo (blue solid curve) or a cuspy dark matter halo with an NFW profile (red dashed curve, concentration c = 9.2,
V200 = 110 km s�1). The dotted green curve shows the contribution of baryons (stars+gas) to the rotation curve, which is included in both model fits. An NFW halo
profile overpredicts the rotation speed in the inner few kpc. Note that the rotation curve is measured over roughly the scale of the 40 kpc inset in the left panel.

typical for galaxy mass halos. When normalized to match the
observed rotation at large radii, the NFW halo overpredicts
the rotation speed in the inner few kpc, by a factor of two or
more.

Early theoretical discussions of the cusp-core problem de-
voted considerable attention to the predicted central slope of
the density profiles and to the e↵ects of finite numerical reso-
lution and cosmological parameter choices on the simulation
predictions (see Ludlow et al. 2013 for a recent, state-of-the-
art discussion). However, the details of the profile shape are
not essential to the conflict; the basic problem is that CDM
predicts too much dark matter in the central few kpc of typical
galaxies, and the tension is evident at scales where vc(r) has
risen to ⇠ 1/2 of its asymptotic value (see, e.g., Alam, Bul-
lock, & Weinberg 2002; Kuzio de Naray & Spekkens 2011).
On the observational side, the most severe discrepancies be-
tween predicted and observed rotation curves arise for fairly
small galaxies, and early discussions focused on whether beam
smearing or non-circular motions could artificially suppress
the measured vc(r) at small radii. However, despite uncer-
tainties in individual cases, improvements in the observations,
sample sizes, and modeling have led to a clear overall picture:
a majority of galaxy rotation curves are better fit with cored
dark matter profiles than with NFW-like dark matter profiles,
and some well observed galaxies cannot be fit with NFW-like
profiles, even when one allows halo concentrations at the low
end of the theoretically predicted distribution and accounts for
uncertainties in modeling the baryon component (e.g., Kuzio
de Naray et al. 2008). Resolving the cusp-core problem there-
fore requires modifying the halo profiles of typical spiral galax-
ies away from the profiles that N-body simulations predict for
collisionless CDM.

Figure 2 illustrates the “missing satellite” problem. The
left panel shows the projected dark matter density distribu-
tion of a 1012M

�

CDM halo formed in a cosmological N-body
simulation. Because CDM preserves primordial fluctuations
down to very small scales, halos today are filled with enormous
numbers of subhalos that collapse at early times and preserve
their identities after falling into larger systems. Prior to 2000,
there were only nine dwarf satellite galaxies known within the

⇠ 250 kpc virial radius of the Milky Way halo (illustrated
in the right panel), with the smallest having stellar velocity
dispersions ⇠ 10 km s�1. Klypin et al. (1999) and Moore et
al. (1999b) predicted a factor ⇠ 5 � 20 more subhalos above
a corresponding velocity threshold in their simulated Milky
Way halos. Establishing the “correspondence” between satel-
lite stellar dynamics and subhalo properties is a key technical
point (Stoehr et al. 2002), which we will return to below, but
a prima facie comparison suggests that the predicted satellite
population far exceeds the observed one.

Fortunately (or perhaps unfortunately), the missing satel-
lite problem seems like it could be solved fairly easily by
baryonic physics. In particular, the velocity threshold at
which subhalo and dwarf satellite counts diverge is close to
the ⇠ 30 km s�1 value at which heating of intergalactic gas
by the ultraviolet photoionizing background should suppress
gas accretion onto halos, which could plausibly cause these
halos to remain dark (Bullock, Kravtsov, & Weinberg 2000;
Benson et al. 2002; Somerville 2002). Alternatively, super-
novae and stellar winds from the first generation of stars could
drive remaining gas out of the shallow potential wells of these
low mass halos. Complicating the situation, searches using
the Sloan Digital Sky Survey have discovered another ⇠ 15
“ultra-faint” satellites with luminosities of only 103 � 105L

�

(e.g., Willman et al. 2005; Belokurov et al. 2007). The high-
latitude SDSS imaging covered only ⇠ 20% of the sky, and
many of the newly discovered dwarfs are so faint that they
could only be seen to 50-100 kpc (Koposov et al. 2008; Walsh
et al. 2009), so extrapolating to the full volume within the
Milky Way virial radius suggests a population of several hun-
dred faint dwarf satellites (Tollerud et al. 2008). Estimates
from stellar dynamics imply that the mass of dark matter in
the central 0.3 kpc of the host subhalos is M0.3 ⇡ 107M

�

across an enormous range of luminosities, L ⇠ 103 � 107L
�

(encompassing the “classical” dwarf spheroidals as well as the
SDSS dwarfs), which suggests that the mapping between halo
mass and luminosity becomes highly stochastic near this mass
threshold (Strigari et al. 2008). The luminosity function of
the faint and ultra-faint dwarfs can be explained by semi-
analytic models invoking photoionization and stellar feedback
(e.g., Koposov et al. 2009; Macciò et al. 2009), though the e�-
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