Cosmology with HSC cosmic shear analysis

Chiaki Hikage

Cosmic shear

Large-scale structure distort the distant galaxy images by the gravitational lensing effect

Weak distortion in galaxy images are spatially correlated and becomes a **direct probe of matter density field**

Lensing power spectrum

10-1

Cosmic shear depends on both the growth of matter density field and the expansion history of the universe

expected from HSC final data

multipole:

SC collaboration

Tomographic lensing spectra

Tension between Planck and weak lensing

Constraints on S₈= $\sigma_8(\Omega_m/0.3)^{0.5}$ from lensing surveys are smaller than that from Planck

 \rightarrow Observational systematic or hints beyond \land CDM model ?

DES vs Planck

DES+Planck: w<-1 !?

wCDM (dark energy EoS parameter 'w' is varied)

DES + Planck constraints $w=-1.34^{+0.08}_{-0.15}$ \rightarrow Will the universe end in Big Rip ?

Adding BAO & JLA (SNe), w=-1.00^{+0.04}-0.05

Hyper-Suprime Cam Subaru Strategic Program

Hyper-Suprim Cam: 1.5 deg diameter camera on 8.2m telescope

• 300 nights (2014–2019)

- 3 layers (Wide, Deep, UltraDeep)
- grizY band + NB filters
- seeing: 0.6-0.7 arcsec
- Japan, ASIAA, Princeton

Wide survey

- · Weak lensing
- · 1400 sq. deg.
- · i<26.4
- ng~25 gal²/sq. arcmin

Main goal of cosmic shear analysis

Deep imaging and high image quality of HSC surveys enables us to do cosmic shear analysis with higher-z galaxies and lower shape noise

	HSC (ACDM)			
⊢ •1	DES Y1 (Troxel et al. 2017)			
⊢ ⊷⊣	KiDS-450 (Hildebrandt et al. 2017)			
	KiDS-450 (Kohlinger et al. 2017)			
⊢ ⊷⊣	CFHTLenS re-analysis (Joudaki et al. 2017)			
⊢ ⊷⊣	Planck TT + LowP (Planck Collaboration 2015)			
0.6 0.7 0.8 0.9	1 1.1 1.2 1.3 1.4 1.5 1.6			
$S_8 (\alpha = 0.5)$				

Blind analysis

- To avoid human bias, we are doing the blinding analysis
- We prepare for three catalog with different shear multiplicative bias (one catalog is true, while other catalogs are fake)
- · The analysis team doesn't know which catalog is true.
- We also blind the central values of cosmological parameters of blind catalogs during the analysis
- We are still in the phase of blind analysis, so we cannot tell the true value of S₈

Properties of HSC Y1 shear catalog

4-bin tomography

bin number	z range	$z_{ m med}$	$N_{ m g}$	$n_{ m g}$ [arcmin ⁻²]	$n_{\rm g, eff}$ [arcmin ⁻²]
1	0.3 - 0.6	0.446	2842635	5.9	5.4
2	0.6 - 0.9	0.724	2848777	5.9	5.3
3	0.9 - 1.2	1.010	2103995	4.3	3.8
4	1.2 - 1.5	1.300	1185335	2.4	2.0
All	0.3 – 1.5	0.809	8980742	18.5	16.5

Comparison with other lensing surveys

survey catalog	area [deg ²]	No. of galaxies	$n_{ m g,eff}$ [arcmin ⁻²]	z range	tomography
KiDS-450	450	14.6M	6.85	0.1 - 0.9	4 bins
DES Y1	1321	26M	5.07	0.2 - 1.3	4 bins
HSC Y1	137	9.0M	16.5	0.3 – 1.5	4 bins

3 times higher number density

Systematics in cosmic shear analysis

- shape measurement error due to imperfect PSF modeling
- photo-z error
- Intrinsic alignment
- · Baryonic effect (SN, AGN feedback)

shape measurement bias due to PSF model error

- Observed galaxy images are convolved with point spread function (PSF) caused by atmosphere and telescope optics
- Shape errors & biases are estimated
 from the image simulations using HST
 COSMOS galaxy sample (see
 Mandelbaum et al. 2018)
- The residual PSF model error and the deconvolution errors of the PSF model ('PSF leakage') are less than ~5% of cosmic shear signals.

2. Photo-z error

- HSC photo-z team estimate redshift probability distribution p(z) with various methods (e.g., template fitting, machine learning based on NN or SOM)
- Their methods are trained/ tested with different set of spec-z, COSMOS samples (see Tanaka et al. 2017)
- The differences of p(z) among different methods are taken into account in our cosmic shear analysis

stacked p(z) in 4 tomographic bin

3. Intrinsic alignment (IA)

- Galaxies are intrinsically aligned by the tidal field, which generates additional correlations between galaxy shapes
- We take into account the IA effect using the nonlinear alignment (NLA) model, which well fit the measured IA signal upto ~1Mpc

Singh & Mandelbaum 2014

4. Baryon physics

Simulations suggest that SN & AGN feedback affect the matter clustering on small scales (< ~1Mpc)

•

- In the cosmic shear analysis, we focus on the scale that the baryonic effect is insignificant
- We also test the baryon effect by introducing additional baryon feedback parameter

Semboloni et al. 2011

Parameters & Priors for MCMC analysis

Parameter	symbols	prior
physical cold dark matter density	$\Omega_{ m c}h^2$	flat [0.01,0.99]
physical baryon density	$\Omega_{ m b}h^2$	flat [0.019,0.026]
$100 \times \text{approx.} \theta_s$	$100\theta_*$	flat [0.5,10]
scalar amplitude on $k = 0.05 \mathrm{Mpc}^{-1}$	$\ln(10^{10}A_s)$	flat [1,10]
scalar spectral index	$n_{ m s}$	flat [0.87,1.07]
optical depth	au	flat [0.01,0.2]
neutrino mass	$\sum m_{\nu} [eV]$	fixed $(0)^{\dagger}$, fixed (0.06) or flat [0,1.2]
Hubble parameter	h	[0.4,1]
dark energy EoS parameter	w	fixed $(-1)^{\dagger}$ or flat $[-2, -0.333]$
amplitude of the intrinsic alignment	A_{IA}	flat [-6,6]
redshift dependence of the intrinsic alignment	$\eta_{ m eff}$	flat [-6,6]
baryonic feedback amplitude	B	fixed (3.13) [†] or flat [2,4]
PSF leakage	ã	Gauss (0.055, 0.017)
residual PSF model error	\tilde{eta}	Gauss (-1.17,0.71)
uncertainty of multiplicative bias m	$100\Delta m$	Gauss (0,1)
photo- z shift in bin 1	$100\Delta z_1$	Gauss (0.78, 2.52)
photo- z shift in bin 2	$100\Delta z_2$	Gauss (-1.10, 0.92)
photo- z shift in bin 3	$100\Delta z_3$	Gauss (0.25, 1.25)
photo- z shift in bin 4	$100\Delta z_4$	Gauss (0.95, 2.29)

Fiducial setup: 5 cosmological parameters and 9 nuisance parameters (2 for IA, 3 for shape error, 4 for photo-z)

Summary

- Unique property of HSC survey combining the depth and image quality enable us to measure cosmic shear precisely
- Cosmic shear measurement from HSC 1yr data can give 3~5% constraint on S₈= $\sigma_8 (\Omega_m/0.3)^{\alpha} (\alpha \sim 0.5)$, which are comparable to other lensing surveys such as DES, KiDS
- We find that our constraint on S₈ is robust against various systematics
- The blinding phase is nearly finishing. We are looking forward to seeing whether the tension with Planck would be still left or not.