## D01: Ultimate Physics Analysis

Eiichiro Komatsu (Max-Planck-Institut für Astrophysik / Kavli IPMU) "*Cosmic Acceleration*" Symposium, Tohoku University February 10, 2018

## Why "Ultimate"?

- The aim is to develop a sound analysis method to use <u>all information</u> contained in <u>multiple</u> data sets
  - In practice, we restrict ourselves to quasilinear regime where the amplitude of fluctuations is less than unity

## Why "Ultimate"?

- The keyword is "cross-correlations"
- The starting point of D01 is to use all information contained in <u>two-point</u> statistics
  - Believe it or not, even this has not been done fully
- We ignore for the moment three-point and higher-order statistics (but see Kayo's talk)

LSS = Large-scale Structure; CMB = Cosmic Microwave Background

## D01: The Core Team



I. Kayo R. Makiya E. Komatsu S. Saito K. Takahashi Tokyo Univ. of Tech MPA / Kavli IPMU Kumamoto Univ.

- $\cdot \ \mathsf{LSS} \quad \cdot \ \mathsf{LSS}$
- Lensing · Hot Gas · CMB · L
- LSS
  Ly-alpha
  21cm

### LSS = Large-scale Structure; CMB = Cosmic Microwave Background

### The First "Acceleration Champions"!!



I. Kayo R. Makiya E. Komatsu S. Saito K. Takahashi Tokyo Univ. of Tech MPA / Kavli IPMU Kumamoto Univ.

- $LSS \cdot LSS \cdot LSS$  $\cdot$  LSS  $\cdot$  LSS
- Lensing · Hot Gas · CMB · Ly-alpha · 21cm

LSS = Large-scale Structure; CMB = Cosmic Microwave Background

## D01: The Core Team



I. Kayo R. Makiya E. Komatsu S. Saito K. Takahashi Tokyo Univ. of Tech MPA / Kavli IPMU Kumamoto Univ.

| • | LSS<br>Lensing                                                         | • | LSS<br>Hot Gas | • | LSS<br>CMB | • | LSS<br>Ly-alpha | • | LSS<br>21cm |
|---|------------------------------------------------------------------------|---|----------------|---|------------|---|-----------------|---|-------------|
|   | Joint analysis, fully taking into account the mutual cross-correlation |   |                |   |            |   |                 |   |             |

## Science Goals

- The main scientific motivations for the "ultimate physics analysis" are three-folds:
- <u>B02,03,04</u> Falsify the  $\Lambda CDM$  model by <u>ruling out  $\Lambda$ </u>
- B01,02,03 Detect, or rule out, the inverted mass hierarchy of the neutrino mass by measuring Σm<sub>v</sub><0.1 eV [95% CL]
- B01 Find definitive evidence for inflation by measuring primordial gravitational waves in the CMB

| 「宇宙の加速膨張」:領域代表 村山 斉<br>領域事務 片山伸彦 |                                                                  |  |                                            |  |                              |          |
|----------------------------------|------------------------------------------------------------------|--|--------------------------------------------|--|------------------------------|----------|
| [X00]総括班<br>村山 (IPMU)            | [A01]Inflation<br>佐々木 (京都)                                       |  | [A02]構造と揺らぎ<br>高橋 (東北)                     |  | [A02]dark energy<br>杉山 (名古屋) |          |
| [B01]CMB偏光<br>羽澄 (KEK)           | δρ/ρ, r, ns<br>直接検証                                              |  | CMB lensing isocurv, <i>m</i> <sub>v</sub> |  | cosm. params<br>CMB lensing  | [D01]デ-  |
| [B02]imaging<br>宮崎 (NAOJ)        | b(k)測定→<br>P <sub>primord</sub> (k)                              |  | weak lensing<br>m <sub>v</sub>             |  | weak lensing<br>SNe-la, γ    | -夕解析班    |
| [B03]spectroscopy<br>高田 (IPMU)   | primord. NG,<br>n <sub>s</sub> , α <sub>s</sub> , Ω <sub>k</sub> |  | dSph, isocurv<br>P(k), m <sub>∨</sub>      |  | BAO<br>Ω∧(z), γ              | 小松 (M    |
| [B04]将来計画<br>臼田 (NAOJ)           | varying α                                                        |  | Lyman α                                    |  | 加速直接測定                       | PA/IPMU) |
| [C01]究極理論<br>大栗 (Caltech/IPML    | mod. grav                                                        |  | non-Std DM                                 |  | models<br>mod. grav.         |          |

# Visible Contributions to B01, 02, and 03

- B01: CMB Sky Simulation Package "GM100"
  - Used by the LiteBIRD foreground study group both inside and outside Japan
- B02: Lensing Simulation "lognormal\_lens" (Kayo's talk)
  - For detailed study of the synergy between B02 and B03
- B03: Galaxy Simulation "lognormal\_galaxies" (published)
  - Playing a leading role in shaping up the SSP Cosmology Program of PFS

## **B01** LiteBIRD Sky Simulation

### Histogram-Equalized Foreground Maps



h kan / GM100

#### Overview

Source

Overview

- **o** Commits
- រិទ្ធ Branches
- **ໃງ Pull request**s
- Pipelines
- Downloads



### by Hiroaki Kanai (YNU)

| ±           | HTTPS Y    | https://bitbucket.org/h_kan/gm100.gi |               |                     |  |  |
|-------------|------------|--------------------------------------|---------------|---------------------|--|--|
| Last<br>Acc | updated 20 | 1 <b>8-01-27</b><br>ad               | 0<br>Open PRs | <b>1</b><br>Watcher |  |  |
|             |            |                                      | 1<br>Branch   | 0<br>Forks          |  |  |

README last update: 2017/12/7 GM100 (generation 100 maps)

#### Description:

This code generates simulated full-sky polarization map By using different random seeds, 100 different maps are each 15 bands. So  $100 \times 15$  bands = 1500 fits files will

#### Requirement:

This code is written by python, and needs the following Versions of those that it is known to work with are:

- python 2.7.10
  healpy 1.10.1
  numpy 1.11.2
- pyfits 3.3

#### Recent activity • 1 commit Pushed to h\_kan/gm100 • 436426b fix bugs of gen.py h kan • 2018-01-27 • 1 commit Pushed to h\_kan/gm100

568a219 fix bug of gen.py an

h kan · 2017-12-17

1 commit Pushed to h\_kan/gm100 35fb96e fix config\_fg

h kan · 2017-12-17

1 commit Pushed to h\_kan/gm100 26e8210 fix gen\_fg bug

h kan · 2017-12-17

1 commit Pushed to h\_kan/gm100 1345389 bug fixed

h kan · 2017-12-17

## BO3 PFS Cosmology Program

#### PFS SSP: COSMOLOGY PROGRAM

A. BOYLE,<sup>1</sup> S. DE LA TORRE,<sup>2</sup> R. DE PUTTER,<sup>3</sup> O. DORÉ,<sup>3,4</sup> C. HIKAGE,<sup>5</sup> Y.-P. JING,<sup>6,7</sup> I. KAYO,<sup>8</sup> E. KOMATSU,<sup>1,5</sup> R. MAKIYA,<sup>1,5</sup> T. OKUMURA,<sup>9</sup> A. PISANI,<sup>10</sup> A. G. SÁNCHEZ,<sup>11</sup> S. SAITO,<sup>1</sup> F. SCHMIDT,<sup>1</sup> M. A. STRAUSS,<sup>10</sup> T. SUNAYAMA,<sup>5</sup> M. TAKADA,<sup>5</sup> P. ZHANG,<sup>12,7</sup> AND G.-B. ZHAO<sup>13, 14</sup>

(Dated: November 25, 2017)

#### ABSTRACT

With about 100 nights of the cosmology program of the PFS SSP, we aim at achieving two major goals: (1) To rule out the inverted hierarchy of neutrino masses by measuring  $\sum m_{\nu} < 0.1$  eV at the 95% CL, or to determine the total mass of neutrinos if  $\sum m_{\nu} > 0.1$  eV; and (2) To rule out the standard  $\Lambda$  Cold Dark Matter ( $\Lambda$ CDM) paradigm by finding a time evolution of dark energy density (thus ruling out the cosmological constant  $\Lambda$ ) or finding evidence for a correction to General Relativity (GR) on cosmological scales, or to confirm  $\Lambda$ CDM with unprecedented precision. We shall achieve these goals by mapping out cosmological distance, the expansion rate of the Universe, and the growth rate of matter density fluctuations as a function of redshift, with only a few percent uncertainty in each of seven redshift bins between z = 0.6 and 2.4. We also make the full use of synergy with the imaging data from the HSC SSP; adding the cross-correlation between 3-dimensional galaxy positions from the PFS and weak gravitational lensing shears from the HSC not only improves the constraints on the neutrino mass, dark energy, and modified gravity, but also provides an important cross check of the results if we measure the neutrino mass, or discover time-evolving dark energy or the breakdown of GR on large scales, which would transform our understanding of the Universe.

## BO3 PFS Cosmology Program

PFS SSP: COSMOLOGY PROGRAM

A. BOYLE,<sup>1</sup> S. DE LA TORRE,<sup>2</sup> R. DE PUTTER,<sup>3</sup> O. DORÉ,<sup>3,4</sup> C. HIKAGE,<sup>5</sup> Y.-P. JING,<sup>6,7</sup> I. KAYO, E. KOMATSU <sup>1,5</sup> R. MAKIYA, <sup>5</sup> T. OKUMURA,<sup>9</sup> A. PISANI,<sup>10</sup> A. G. SÁNCHEZ,<sup>11</sup> S. SAITO <sup>1</sup> F. SCHMIDT,<sup>1</sup> M. A. STRAUSS,<sup>10</sup> T. SUNAYAMA,<sup>5</sup> M. TAKADA,<sup>5</sup> P. ZHANG,<sup>12,7</sup> AND G.-B. ZHAO<sup>13,14</sup>

(Dated: November 25, 2017)

### **D01 contributors**

#### ABSTRACT

With about 100 nights of the cosmology program of the PFS SSP, we aim at achieving two major goals: (1) To rule out the inverted hierarchy of neutrino masses by measuring  $\sum m_{\nu} < 0.1$  eV at the 95% CL, or to determine the total mass of neutrinos if  $\sum m_{\nu} > 0.1$  eV; and (2) To rule out the standard  $\Lambda$  Cold Dark Matter ( $\Lambda$ CDM) paradigm by finding a time evolution of dark energy density (thus ruling out the cosmological constant  $\Lambda$ ) or finding evidence for a correction to General Relativity (GR) on cosmological scales, or to confirm  $\Lambda$ CDM with unprecedented precision. We shall achieve these goals by mapping out cosmological distance, the expansion rate of the Universe, and the growth rate of matter density fluctuations as a function of redshift, with only a few percent uncertainty in each of seven redshift bins between z = 0.6 and 2.4. We also make the full use of synergy with the imaging data from the HSC SSP; adding the cross-correlation between 3-dimensional galaxy positions from the PFS and weak gravitational lensing shears from the HSC not only improves the constraints on the neutrino mass, dark energy, and modified gravity, but also provides an important cross check of the results if we measure the neutrino mass, or discover time-evolving dark energy or the breakdown of GR on large scales, which would transform our understanding of the Universe.

## BO3 PFS Cosmology Program

PFS SSP: COSMOLOGY PROGRAM

A. BOYLE,<sup>1</sup> S. DE LA TORRE,<sup>2</sup> R. DE PUTTER,<sup>3</sup> O. DORÉ,<sup>3,4</sup> C. HIKAGE, Y.-P. JING,<sup>6,7</sup> I. KAYO, E. KOMATSU<sup>1,5</sup> R. MAKIYA,<sup>5</sup> T. OKUMURA,<sup>9</sup> A. PISANI,<sup>10</sup> A. G. SÁNCHEZ,<sup>11</sup> S. SAITO<sup>1</sup> F. SCHMIDT,<sup>1</sup> M. A. STRAUSS,<sup>11</sup> T. SUNAYAMA, M. TAKADA<sup>5</sup> P. ZHANG,<sup>12,7</sup> AND G.-B. ZHAO<sup>13,14</sup>

### **B03 contributors**

(Dated: November 25, 2017)

### **D01 contributors**

#### ABSTRACT

With about 100 nights of the cosmology program of the PFS SSP, we aim at achieving two major goals: (1) To rule out the inverted hierarchy of neutrino masses by measuring  $\sum m_{\nu} < 0.1$  eV at the 95% CL, or to determine the total mass of neutrinos if  $\sum m_{\nu} > 0.1$  eV; and (2) To rule out the standard  $\Lambda$  Cold Dark Matter ( $\Lambda$ CDM) paradigm by finding a time evolution of dark energy density (thus ruling out the cosmological constant  $\Lambda$ ) or finding evidence for a correction to General Relativity (GR) on cosmological scales, or to confirm  $\Lambda$ CDM with unprecedented precision. We shall achieve these goals by mapping out cosmological distance, the expansion rate of the Universe, and the growth rate of matter density fluctuations as a function of redshift, with only a few percent uncertainty in each of seven redshift bins between z = 0.6 and 2.4. We also make the full use of synergy with the imaging data from the HSC SSP; adding the cross-correlation between 3-dimensional galaxy positions from the PFS and weak gravitational lensing shears from the HSC not only improves the constraints on the neutrino mass, dark energy, and modified gravity, but also provides an important cross check of the results if we measure the neutrino mass, or discover time-evolving dark energy or the breakdown of GR on large scales, which would transform our understanding of the Universe.

#### Work Horse: "log-normal\_galaxies"

#### **Overview**

| ±   | HTTPS ¥                         | https://komatsu5 | 147@bitbuck   | et.org/       |
|-----|---------------------------------|------------------|---------------|---------------|
| Las | st updated 20<br>ccess level Ad | 17-06-29<br>min  | 3<br>Open PRs | 3<br>Watchers |
|     |                                 |                  | 6<br>Branches | 0<br>Forks    |

#### Edit README

#### Log-normal galaxies

Codes for generating log-normal realisations of galaxies in redshift-space, and computing the monopole, guadrupole, and hexadecapole power spectra.

Reference: A. Agrawal, R. Makiya, C.-T. Chiang, D. Jeong, S. Saito, and E. Komatsu, arXiv:1706.09195

#### History

- Originally developed by Donghui Jeong (Penn State Univ.) in 2011
- Enhanced by Chi-Ting Chiang (Stony Brook Univ.) through 2015 (arXiv:1306.4157 is based on this code)
- Packaged by Eiichiro Komatsu on December 28, 2015
- (v2) includes a fix in "calc\_pk\_const\_los\_ngp" by lssha

#### Generating log-normal mock catalog of galaxies in redshift space

#### Aniket Agrawal,<sup>a</sup> Ryu Makiya,<sup>a,b</sup> Chi-Ting Chiang,<sup>c</sup> Donghui Jeong, d,e Shun Saito<sup>a</sup> and Eiichiro Komatsu<sup>a,b</sup>

<sup>a</sup>Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany <sup>b</sup>Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, the University of Tokyo, (Kavli IPMU, WPI), Kashiwa, 277-8583, Japan <sup>c</sup>C.N. Yang Institute for Theoretical Physics, Department of Physics & Astronomy, Stony Brook University, Stony Brook, NY 11794, U.S.A. <sup>d</sup>Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802, U.S.A. <sup>e</sup>Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802, U.S.A. E-mail: aniket@mpa-garching.mpg.de, makiya@mpa-garching.mpg.de,

chi-ting.chiang@stonybrook.edu, djeong@psu.edu, ssaito@mpa-garching.mpg.de, komatsu@mpa-garching.mpg.de

Received June 29, 2017 Accepted September 6, 2017 Published October 3, 2017

Abstract. We present a public code to generate a mock galaxy catalog in redshift space assuming a log-normal probability density function (PDF) of galaxy and matter density fields. We draw galaxies by Poisson-sampling the log-normal field, and calculate the velocity field from the linearised continuity equation of matter fields, assuming zero vorticity. This procedure yields a PDF of the pairwise velocity fields that is qualitatively similar to that of N-body simulations. We check fidelity of the catalog, showing that the measured two-point correlation function and power spectrum in real space agree with the input precisely. We find that a linear bias relation in the power spectrum does not guarantee a linear bias relation in the density contrasts, leading to a cross-correlation coefficient of matter and galaxies deviating from unity on small scales. We also find that linearising the Jacobian of the real-to-redshift space mapping provides a poor model for the two-point statistics in redshift space. That is, non-linear redshift-space distortion is dominated by non-linearity in the Jacobian. The power spectrum in redshift space shows a damping on small scales that is qualitatively similar to that of the well-known Fingers-of-God (FoG) effect due to random velocities, except that

#### Work Horse: "log-normal\_galaxies"

#### Overview

| ±         | HTTPS ¥                        | https://komatsu5 | i147@bitbuck  | et.org/       |
|-----------|--------------------------------|------------------|---------------|---------------|
| Las<br>Ac | st updated 20<br>cess level Ad | 17-06-29<br>Imin | 3<br>Open PRs | 3<br>Watchers |
|           |                                |                  | 6<br>Branches | 0<br>Forks    |

#### Edit README

### ournal of Cosmology and Astroparticle Physics

#### Generating log-normal mock catalog of galaxies in redshift space

### Aniket Agrawal,<sup>a</sup> Ryu Makiya,<sup>a,b</sup> Chi-Ting Chiang,<sup>c</sup> Donghui Jeong,<sup>d,e</sup> Shun Saito<sup>a</sup> and Eiichiro Komatsu<sup>a,b</sup>

<sup>a</sup>Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany
<sup>b</sup>Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, the University of Tokyo, (Kavli IPMU, WPI), Kashiwa, 277-8583, Japan
<sup>c</sup>C.N. Yang Institute for Theoretical Physics,

Hi







Ryu Makiya / Aniket Agrawal / Shun Saito (Kavli IPMU/MPA) (MPA) (MPA)

Chi-Ting Chiang (Stony Brook)

Donghui Jeong (Penn State)

- Packaged by Eiichiro Komatsu on December 28, 2015
- (v2) includes a fix in "calc\_pk\_const\_los\_ngp" by Issha

space mapping provides a poor model for the two-point statistics in redshift space. That is, non-linear redshift-space distortion is dominated by non-linearity in the Jacobian. The power spectrum in redshift space shows a damping on small scales that is qualitatively similar to that of the well-known Fingers-of-God (FoG) effect due to random velocities, except that

### simulated galaxy map z = 1.5, spring field



### Example Deliverables: Galaxy Power Spectra





### There are six more redshift bins

**SSP Cosmology Proposal** 

### SSP Cosmology Proposal LOTTO Proposal In the Cosmology Paper! by R. Makiya



## Synergy: HSC+PFS

#### PFS SSP: COSMOLOGY PROGRAM

A. BOYLE,<sup>1</sup> S. DE LA TORRE,<sup>2</sup> R. DE PUTTER,<sup>3</sup> O. DORÉ,<sup>3,4</sup> C. HIKAGE,<sup>5</sup> Y.-P. JING,<sup>6,7</sup> I. KAYO,<sup>8</sup> E. KOMATSU,<sup>1,5</sup> R. MAKIYA,<sup>1,5</sup> T. OKUMURA,<sup>9</sup> A. PISANI,<sup>10</sup> A. G. SÁNCHEZ,<sup>11</sup> S. SAITO,<sup>1</sup> F. SCHMIDT,<sup>1</sup> M. A. STRAUSS,<sup>10</sup> T. SUNAYAMA,<sup>5</sup> M. TAKADA,<sup>5</sup> P. ZHANG,<sup>12,7</sup> AND G.-B. ZHAO<sup>13, 14</sup>

(Dated: November 25, 2017)

#### ABSTRACT

With about 100 nights of the cosmology program of the PFS SSP, we aim at achieving two major goals: (1) To rule out the inverted hierarchy of neutrino masses by measuring  $\sum m_{\nu} < 0.1$  eV at the 95% CL, or to determine the total mass of neutrinos if  $\sum m_{\nu} > 0.1$  eV; and (2) To rule out the standard  $\Lambda$  Cold Dark Matter ( $\Lambda$ CDM) paradigm by finding a time evolution of dark energy density (thus ruling out the cosmological constant  $\Lambda$ ) or finding evidence for a correction to General Relativity (GR) on cosmological scales, or to confirm  $\Lambda$ CDM with unprecedented precision. We shall achieve these goals by mapping out cosmological distance, the expansion rate of the Universe, and the growth rate of matter density fluctuations as a function of redshift, with only a few percent uncertainty in each of seven redshift, bins between z = 0.6 and 2.4. We also make the full use of synergy with the imaging data from the HSC SSP; adding the cross-correlation between 3-dimensional galaxy positions from the PFS and weak gravitational lensing shears from the HSC not only improves the constraints on the neutrino mass, dark energy, and modified gravity, but also provides an important cross check of the results if we measure the neutrino mass, or discover time-evolving dark energy or the breakdown of GR on large scales, which would transform our understanding of the Universe.

## Synergy: HSC+PFS

#### PFS SSP: COSMOLOGY PROGRAM

A. BOYLE,<sup>1</sup> S. DE LA TORRE,<sup>2</sup> R. DE PUTTER,<sup>3</sup> O. DORÉ,<sup>3,4</sup> C. HIKAGE,<sup>5</sup> Y.-P. JING,<sup>6,7</sup> I. KAYO,<sup>8</sup> E. KOMATSU,<sup>1,5</sup> R. MAKIYA,<sup>1,5</sup> T. OKUMURA,<sup>9</sup> A. PISANI,<sup>10</sup> A. G. SÁNCHEZ,<sup>11</sup> S. SAITO,<sup>1</sup> F. SCHMIDT,<sup>1</sup> M. A. STRAUSS,<sup>10</sup> T. SUNAYAMA,<sup>5</sup> M. TAKADA,<sup>5</sup> P. ZHANG,<sup>12,7</sup> AND G.-B. ZHAO<sup>13, 14</sup>

(Dated: November 25, 2017)

#### ABSTRACT

With about 100 nights of the cosmology program of the PFS SSP, we aim at achieving two major goals: (1) To rule out the inverted hierarchy of neutrino masses by measuring  $\sum m_{\nu} < 0.1$  eV at the 95% CL, or to determine the total mass of neutrinos if  $\sum m_{\nu} > 0.1$  eV; and (2) To rule out the standard  $\Lambda$  Cold Dark Matter ( $\Lambda$ CDM) paradigm by finding a time evolution of dark energy density (thus ruling out the cosmological constant  $\Lambda$ ) or finding evidence for a correction to General Relativity (GR) on cosmological scales, or to confirm  $\Lambda$ CDM with unprecedented precision. We shall achieve these goals by mapping out cosmological distance, the expansion rate of the Universe, and the growth rate of matter density fluctuations as a function of redshift, with only a few percent uncertainty in each of seven redshift

#### We also make the full use of synergy with the imaging data from the HSC SSP

the HSC not only improves the constraints on the neutrino mass, dark energy, and modified gravity, but also provides an important cross check of the results if we measure the neutrino mass, or discover time-evolving dark energy or the breakdown of GR on large scales, which would transform our understanding of the Universe.

#### **Overview**

#### HTTPS V https://komatsu5147@bitbucket.org/

| Last updated 2017-05-29     | 0                  | <b>1</b>   |
|-----------------------------|--------------------|------------|
| Access level Write (revoke) | Open PRs           | Watcher    |
|                             | <b>1</b><br>Branch | 0<br>Forks |

#### 🖉 Edit README

#### Log-normal lens

Log-normal simulation of the convergence fields. To run the code users also need to install lognormal\_galaxies

#### History

 Originally developed by Issha Kayo (Tokyo University of Technology) in 2017

#### Overview

This package consists of the following steps:

- Generate the matter and galaxy density field by using the external code, lognormal\_galaxies
- 2. Ray-trace the matter density field to construct the convergence fields by using RAYTRIX, which is included in

### Log-normal simulation for weak gravitational lensing: application to the cross-correlation with galaxies

#### Ryu Makiya,<sup>a,b</sup> Issha Kayo,<sup>c</sup> Eiichiro Komatsu<sup>a,b</sup>

<sup>a</sup>Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany <sup>b</sup>Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa, Japan 277-8583 (Kavli IPMU, WPI) <sup>c</sup>Department of Liberal Arts, Tokyo University of Technology, 5-23-22 Nishikamata, Ota-ku, Tokyo, Japan

 ${\bf E-mail:\ makiya@mpa-garching.mpg.de,\ kayouissha@stf.teu.ac.jp}$ 

**Abstract.** We ray-trace cosmic density fluctuations that follow a log-normal distribution to produce maps of weak gravitational lensing shear fields. Cross-correlation of weak lensing maps with positions of galaxies is a powerful probe of cosmology, including the mass of neutrinos. We use our simulations to study the improvement on the constraints on neutrino masses by adding the weak lensing data of, e.g., Hyper Suprime-Cam (HSC) survey, to the galaxy power spectrum in redshift space of, e.g., Prime Focus Spectrograph (PFS) survey, both on Subaru Telescope. We find that the nominal PFS survey reaches the threshold for testing the inverted mass hierarchy of  $\sum m_{\nu} \approx 0.1$  eV assuming a flat  $\Lambda$ CDM model, and that adding the HSC data pushes the limit to  $\sum m_{\nu} \approx TBD$  eV. While relaxing the assumption of the cosmological constant increases the uncertainty in the neutrino mass constraint, the weak lensing data help...? (TBD) We also simulate galaxy positions in redshift space and weak lensing data for Eulid- and WFIRST-like surveys, finding similar results.



#### **Overview**

#### HTTPS V https://komatsu5147@bitbucket.org/

| Last updated 2017-05-29     | 0                  | <b>1</b>   |
|-----------------------------|--------------------|------------|
| Access level Write (revoke) | Open PRs           | Watcher    |
|                             | <b>1</b><br>Branch | 0<br>Forks |

#### 🖉 Edit README

#### Log-normal lens





#### Issha Kayo Ryu Makiya (Tokyo Univ. of Tech) (Kavli IPMU/MPA)

Ray-trace the matter density field to construct the convergence fields by using RAYTRIX, which is included in

### Log-normal simulation for weak gravitational lensing: application to the cross-correlation with galaxies

#### Ryu Makiya,<sup>a,b</sup> Issha Kayo,<sup>c</sup> Eiichiro Komatsu<sup>a,b</sup>

<sup>a</sup>Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany <sup>b</sup>Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa, Japan 277-8583 (Kavli IPMU, WPI) <sup>c</sup>Department of Liberal Arts, Tokyo University of Technology, 5-23-22 Nishikamata, Ota-ku, Tokyo, Japan

 ${\bf E-mail: } makiya@mpa-garching.mpg.de, kayouissha@stf.teu.ac.jp$ 

5.4

4.8

4.2

3.6

2.4

1.8

1.2

0.6

**Abstract.** We ray-trace cosmic density fluctuations that follow a log-normal distribution to produce maps of weak gravitational lensing shear fields. Cross-correlation of weak lensing maps with positions of galaxies is a powerful probe of cosmology, including the mass of neutrinos. We use our simulations to study the improvement on the constraints on neutrino masses by adding the weak lensing data of, e.g., Hyper Suprime-Cam (HSC) survey, to the galaxy power spectrum in redshift space of, e.g., Prime Focus Spectrograph (PFS) survey, both on Subaru Telescope. We find that the nominal PFS survey reaches the threshold for testing the inverted mass hierarchy of  $\sum m_{\nu} \approx 0.1$  eV assuming a flat  $\Lambda$ CDM model, and that adding the HSC data pushes the limit to  $\sum m_{\nu} \approx TBD$  eV. While relaxing the assumption of the cosmological constant increases the uncertainty in the neutrino mass constraint, the weak lensing data help...? (TBD) We also simulate galaxy positions in redshift space and weak lensing data for Eulid- and WFIRST-like surveys, finding similar results.





**PFS** galaxies

**HSC** lensing

**Cross-correlating HSC and PFS!** 

### Galaxy-shear Cross Spectra



### **Testing Modified Gravity** (Weak lensing + Galaxy clustering) 0.6 Galaxy-shear correlation livided by galaxy clustering E<sub>6</sub>(z) FS X HSC(z>z<sub>PFS</sub>) PFS X ACTpol General 0.4 **Relativity Pengjie Zhang** (Shanghai Jiao Tong) 0.2 "DGP" braneworld 0 0.5 2.52 1.5 ( ) $\mathbf{z}$

### "GM100"







0.05

0.05

0.04

0.03

0.02

0.01

0.00

-0.01





## Going Beyond Tradition

- A hot, new tool in cosmology: "intensity mapping"
- The best known example is the intensity mapping using **neutral hydrogen lines** (21 cm lines)
- Exciting science also with Lyman-alpha intensity mapping
- Coming Soon: "*lognormal\_im*"!





## We also take orders :)





B01

We have a student from Oxford working on LiteBIRD. Can we do something interesting?



PHYSICAL REVIEW D

covering particles, fields, gravitation, and cosmology

Highlights Recent Accepted Authors Referees Search Press About ភា

#### Accepted Paper

## Finding the chiral gravitational wave background of an axion-SU(2) inflationary model using CMB observations and laser interferometers

Phys. Rev. D

Ben Thorne, Tomohiro Fujita, Masashi Hazumi, Nobuhiko Katayama, Eiichiro Komatsu, and Maresuke Shiraishi

Accepted 8 January 2018

ABSTRACT

#### ABSTRACT

A detection of B-mode polarization of the Cosmic Microwave Background (CMB) anisotropies would confirm the presence of a primordial gravitational wave background (GWB). In the inflation paradigm this would be an unprecedented probe of the energy scale of inflation as it is directly proportional to the power spectrum of the GWB. However, similar tensor perturbations can be produced by the matter fields present during inflation, breaking the simple relationship between energy scale and the tensor-to-scalar ratio r. It is therefore important to find ways of distinguishing between the generation mechanisms of the GWB. Without doing a full model selection, we analyse the detectability of a new axion-SU(2) gauge field model by calculating the signal-to-noise of future CMB and interferometer observations sensitive to the chirality of the tensor spectrum. We forecast the detectability of the

B01

D01



B01 Do you have an interesting inflation model that can be tested by LiteBIRD?

A01

Of course I do!







B01

### A01 Calculate this

### To Takashi Hiramatsu

from Facebook







B01

A01

## Ask Eiichiro

"Done, but how can we see this in the data?"







B01

A01

### Ask Eiichiro

"Done, but how can we see this in the data?"



Jawohl





B01

A01



### Web App (by T. Hiramatsu)



NOTE : Hovering over parameter names shows pop-up information on each parameter.

| Opening talk (Chair: Miyazaki)                                                                               | Prof. Hitoshi MURAYAMA |
|--------------------------------------------------------------------------------------------------------------|------------------------|
| 理学研究科合同C棟青葉サイエンスホール, 東北大学                                                                                    | 10:30 - 11:00          |
| Research achievements of the D01 and impacts on the other groups                                             | Prof. Eiichiro KOMATSU |
| 理学研究科合同C棟青葉サイエンスホール, 東北大学                                                                                    | 11:00 - 11:20          |
| Log-normal simulation for weak gravitational lensing: application to the cross-<br>correlation with galaxies | Dr. Issha KAYO         |
| Probing gas physics from the SZ-galaxy cross-correlations                                                    | Dr. Ryu MAKIYA         |
| 理学研究科合同C棟青葉サイエンスホール,東北大学                                                                                     | 11:40 - 12:00          |
| Reconstruction of primordial tensor power spectrum from B-mode observations                                  | Dr. Takashi HIRAMATSU  |
| 理学研究科合同C棟青葉サイエンスホール,東北大学                                                                                     | 12:00 - 12:20          |
| Discussion and feedback on the D01 activities                                                                |                        |
| 理学研究科合同C棟青葉サイエンスホール,東北大学                                                                                     | 12:20 - 12:30          |
| Lunch break + poster session                                                                                 |                        |

Opening talk (Chair: Miyazaki)

理学研究科合同C棟青葉サイエンスホール,東北大学

Research achievements of the D01 and impacts on the othe

理学研究科合同C棟青葉サイエンスホール,東北大学

Log-normal simulation for weak gravitational lensing: appli correlation with galaxies

Probing gas physics from the SZ-galaxy cross-correlations

理学研究科合同C棟青葉サイエンスホール,東北大学

Reconstruction of primordial tensor power spectrum from B-mode observ

理学研究科合同C棟青葉サイエンスホール,東北大学

Discussion and feedback on the D01 activities

理学研究科合同C棟青葉サイエンスホール,東北大学

Lunch break + poster session

12:30 - 13:30



Prof. Eiichiro KOMATSU

10:30 - 11:00



💮r. Ryu MAKIYA



12:20 - 12:30

| Opening talk (Chair: Miyazaki)                                               |                                   | Prof. Hitoshi MURAYAMA |
|------------------------------------------------------------------------------|-----------------------------------|------------------------|
| 理学研究科合同C棟青葉サイエンスホール, 東北大学                                                    |                                   | 10:30 - 11:00          |
| Research achievements of the D01 and impacts                                 | on the other groups               | Prof. Eiichiro KOMATSU |
| 理学研究科合同C棟青葉サイエンスホール, 東北大学                                                    |                                   | 11:00 - 11:20          |
| Log-normal simulation for weak gravitational le<br>correlation with galaxies | ensing: application to the cross- | Dr. Issha KAYO         |
| Probing gas physics from the SZ-galaxy cross-co                              | orrelations                       | Dr. Ryu MAKIYA         |
| 理学研究科合同C棟青葉サイエンスホール, 東北大学                                                    |                                   | 11:40 - 12:00          |
| Reconstruction of primordial tensor power spec                               | trum from B-mode observations     | Dr. Takashi HIRAMATSU  |
| 理学研究科合同C棟青葉サイエンスホール, 東北大学                                                    |                                   | 12:00 - 12:20          |
| Discussion and feedback on the D01 activities                                |                                   |                        |
| 理学研究科合同C棟青葉サイエンスホール, 東北大学                                                    |                                   | 12:20 - 12:30          |
| Lunch break + poster session                                                 |                                   |                        |

We will probably run out of time, but if we do have time left in the end, we would like to hear what we can do for you!