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Deep Learning is Everywhere A KIT

» In image recognitions, language translations, playing intelligent
games, etc. |
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Predicting z from 5-Band Flux of Subaru HSC A KIT
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Degeneracy makes prediction hard!

» t-SNE (+-Distributed Stochastic Neighbor Embedding) plot of (G,
R, I, Z, Y) data points

1-SNE Plot of Test Data (after 1,000 iterations)
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+ other features
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Dataset A KIT

» s | bb_udeep_wide_depth_median with high precision photo-z by
Laigle et al.

» 40,000 training data

% for computing edge weights in NN

> 10,000 validation data

% for choosing the best hyper-parameter configuration

> 8,629 test data

% for getting the performance of the chosen model
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Neural network architectures (1) A KIT

» Convolutional Neural Network (CNN)
% ~3 million parameters
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Examples of filters after training
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Challenges of deep learning A KIT

» Overfitting
% Need complex model to fit data

% But too much complexity tends to overfit training data and does not
generalize well (for unseen data)

% Mitigations
» Regularization
» Data augmentation
» Dropout (NN only)
» Batch normalization (NN only)
» Shortcut connections for learning residuals (ResNet only)
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Neural network architectures (2) A KIT

» ResNet (Residual Network)
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Random forest vs. neural networks

photoz

Random Forest

Random Forest on Test Data

CNN

Convolutional Neural Net on Test Data

ResNet |00

ResNet 50 (N = 8629)

ref_photoz
RMSE = 0.52, dispersion = 0.11, outlier rate = 0.29

ref_photoz
RMSE = 0.58, dispersion = 0.07, outlier rate = 0.15

ref_phaotoz

rmse:; 0.57 , dispersion: 0.07 , outlier rate: 0.17

Random Forest

CNN

ResNet 100
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Raw outputs from CNN A KIT

» Our CNN model outputs "probability distribution” of z

object: 43158747673006938 object: 43158455615233255 object: 43158455615249353

% Almost right
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% Hugely overestimated

object: 43158189327274435 object: 43158331061202040 object: 43158588759245335
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How does it perform on different seeings?

A KIT

> Best

Training Image (ref_photoz = 1.00)
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Images from different seeings A KIT

» Model trained on median seeing
Worst seeing (| 3% outliers) Best seeing (|1 5% outliers)
best seeing (N = 1473)

worst seeing (N = 1283)
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Summary A KIT

» Deep Neural Network: Powerful tool for predicting photo-z
(especially for reducing outlier rates)

» Raw output of CNN/ResNet can be considered as a probability
distribution of photo-z and may be used for identifying could-be
outliers (e.g., double peaks)
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