

Predicting Photo-z using Deep Learning

February 10th, 2018

Jun Nakano

Department of Information and Computer Engineering

Kanazawa Institute of Technology

https://www.nakanolab.net/

Deep Learning is Everywhere

In image recognitions, language translations, playing intelligent games, etc.

> And in astrophysics, too!

Predicting z from 5-Band Flux of Subaru HSC

Degeneracy makes prediction hard!

+-SNE (t-Distributed Stochastic Neighbor Embedding) plot of (G, R, I, Z, Y) data points

Predicting z from 5-Band Flux of Subaru HSC

Predicting z from 5-Band Images of HSC

Dataset

- s15b_udeep_wide_depth_median with high precision photo-z by Laigle et al.
- > 40,000 training data
 - for computing edge weights in NN
- I0,000 validation data
 - for choosing the best hyper-parameter configuration

> 8,629 test data

for getting the performance of the chosen model

Neural network architectures (I)

Convolutional Neural Network (CNN)

☆ ~3 million parameters

Examples of filters after training

> convl/weights/Z

> Overfitting

- Need complex model to fit data
- But too much complexity tends to overfit training data and does not generalize well (for unseen data)
- Mitigations
 - » Regularization
 - » Data augmentation
 - » Dropout (NN only)
 - » Batch normalization (NN only)
 - » Shortcut connections for learning residuals (ResNet only)

Neural network architectures (2)

Random forest vs. neural networks

	Random Forest	CNN	ResNet 100
RMSE	0.52	0.58	0.57
Dispersion	0.11	0.07	0.07
Outlier Rate	0.29	0.17	0.17

Raw outputs from CNN

> Our CNN model outputs "probability distribution" of z

Almost right

Hugely overestimated

Hugely underestimated

How does it perform on different seeings?

Images from different seeings

🦀 KIT

- Deep Neural Network: Powerful tool for predicting photo-z (especially for reducing outlier rates)
- Raw output of CNN/ResNet can be considered as a probability distribution of photo-z and may be used for identifying could-be outliers (e.g., double peaks)