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Big questions

We already know:

Most massive galaxies
harbor a supermassive
black hole (SMBH) at
their center. It causes
quasar (or AGN) activities
through gas accretion.
The SMBH mass reaches
up to Mgy ~ 10910 M.

We still do not know (=2 targets of this work):

»When the first “massive” BHs appeared in the Universe?
»When and how SMBHs grew in the cosmological timescale?
»How the statistical properties of quasars depend on redshift?
»How the SMBH growth is related to the galaxy evolution?



"Co-evolution” of SMBHSs and gal{ {2} Quasars
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- QSO luminosity fades rapidly
- tidal features visible only with
very deep observations
- remnant reddens rapidly (E+A/K+A)
- "hot halo” from feedback
- sets up quasi-static cooling

- halo accretes similar-mass
companion(s)

- can occur over a wide mass range

= Maaio still similar to before
dynamical friction merges
the subhalos efficiently
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Dusty AGNs in "dust obscured galaxies (DOGs)"

»identifying red AGNs with HSC & MIR all-sky data

~ WISE all-sky survey data > Wide & Deep MIR image
~ HSC-SSP data > Wide & Deep optical image
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) Red WISE-detected
quasars cannot be
detected in SDSS
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DOGs in the initial 10 deg? of the HSC-SSP
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DOGs in the latest 53 deg? of the HSC-SSP

HSC S16a wide forced catalog
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HSC DOGs: evolutionary effects?
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HSC quasars at z > 6: candidate selection

Bayesian quasar probabilit
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Candidates are selected
with HSC |, z, y photometry
(y-band is powerful).

We calculate the Bayesian
quasar probability for every
point sources, for selecting
our spectroscopic targets.

Wo (d)
Wo(d) + Wp(d)
Wop(d) =

| S Prdetip) Prdp) dp

d: mag of HSC bands
p : luminosity, redshift, spectral type
S': surface density of objects with p
Pr(det|p) : detection probability
under the current sensitivity
Pr(d|p) : probability that objects with p
will be observed as d

PSd) =
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>060 quasars at 5.7 < z < 6.9 have been newly discovered!!

Some quasars show strong outflow features
— They may be objects in the “blowing-out” phase



SMBH mass of HSC quasars at z>6

Onoue et al. (incl. TN) in prep.

Follow-up NIR spectroscopy with Gemini/GNIRS
— Mgy ~ 102 M, in this case (very massive!!)
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SMBH mass of HSC quasars at z>6

Redshift” yﬁB [nstrument fexp
(mag) (hour)
HSCJ2239+0207  6.26  22.33 Gemini/GNIRS 2.7
HSC J1208-0200 6.2  22.05 Gemini/GNIRS 3.7
HSCJ2216-0016  6.09  22.94 Gemini/GNIRS 9.0
HSCJ0859+0022 639  23.23 VLI/X-SHOOTER 7.2 (NIR)
6.5 (VIS)
HSCJ1205-00009 6.7-69 22.61 VLI/X-SHOOTER 0.8 (NIR)
0.7 (VIS)
ID Megu(x108 Msun) Lbo/LEedd
Onoue et al. (incl. TN) in prep.
J2239 8.1x1.9 0.23+0.07
J1208 2.5+0.2 0.67+0.09
Number density of SMBHs with J2216 6.1£1.6 0.1520.05
Mgy ~ 1089 M, ,, at z~6 much J0859  0.17+0.04 2.4+1.0
higher than z~6 SDSS quasars !
9 9 J1205 9.3+1.1 3.6+£0.7




ALMA observations for HSC quasars at z>6

panlwgns “[e 18 ‘oebepN ‘e1eMelIys ‘enouQ ‘lwnz|

Color: [CII]158 line
Contour: FIR cont.




ALMA [CIT]158 spectra of HSC quasars at z>6
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|lzumi, Onoue, Shirakata, Nagao, et al., submitted



Galaxy-SMBH coevolution in the early Universe

Mg/ My of low-luminosity
quasars looks consistent to
the ratio seen in low-z, while
high-luminosity quasars
show significant deviation.

Probably the results for
high-luminosity quasars are
affected by selection effects.

Galaxies and SMBHSs
experienced the coevolution
with keeping their flux ratio.

|lzumi, Onoue, Shirakata, Nagao, et al., submitted



Radio galaxies: in the final phase of SMBH growth
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RGs are characterized by high Mg, and low accretion rate
- RGs are in the final phase of the growth of SMBHSs
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Radio galaxies: in the final phase of galaxy growth

Host Galaxy Mass of RGs (z) of known RGs
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RGs are hosted by massive quiescent galaxies even at high-z

- RGs are in the final phase of the growth of massive galaxies
Only few RGs have been identified so far...

- new survey needed > HSC !!
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®
Radio galaxies: SDSS-RGs vs. HSC-RGs €

HSC-FIRST search for radio galaxies
~ larger “radio-loudness” objects than SDSS-FIRST
~ higher redshift (~1-2) than SDSS-FIRST (~0-1)
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Summary

» Toward understanding the total picture of the SMBH evolution
~ focusing on dusty AGNs, quasars, and radio galaxies
~ utilizing the HSC-SSP data combined with multi-wav. data

» HSC search for dusty AGNs in dust-obscured galaxies (DOGs)
~ HSC+WISE > DOGs (AGN-dominated + SF-dominated)
~ Blue-excess DOGs: in the “blowing-out” phase?

» HSC search for quasarsatz> 6
~ discovery of new >60 quasars atz > 6
~ NIR spectroscopy - many SMBHs with Mgy ~ 108-° M,
~ ALMA - galaxy-SMBH coevolution with constant Mg/ My,

» HSC search for radio galaxies

~ HSC is powerful to find RGs with a larger radio loudness
& higher redshift

~ follow-up spectroscopy now on-going (and waiting for PFS!!)
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