

Explorations for high-z dusty AGNs, quasars, and radio galaxies, with Subaru Hyper Suprime Cam

Tohru Nagao (Ehime U.) on behalf of the HSC-AGN WG

This work is supported by an "open-called research (公募研究)" under the "Why does the Universe accelerate?" program.

Symposium "Why does the Universe accelerate?" 10-12 February 2018, Aoba Science Hall, Tohoku Univ.

Big questions

We already know:

Most massive galaxies harbor a supermassive black hole (SMBH) at their center. It causes quasar (or AGN) activities through gas accretion. The SMBH mass reaches up to $M_{\rm BH} \sim 10^{9-10} M_{\rm sun}$.

<u>We still do not know (\rightarrow targets of this work)</u>:

When the first "massive" BHs appeared in the Universe?
When and how SMBHs grew in the cosmological timescale?
How the statistical properties of quasars depend on redshift?
How the SMBH growth is related to the galaxy evolution?

Dusty AGNs in "dust obscured galaxies (DOGs)"

➢identifying red AGNs with HSC & MIR all-sky data

~ WISE all-sky survey data → Wide & Deep MIR image

~ HSC-SSP data \rightarrow Wide & Deep optical image

Noboriguchi, TN, Toba, et al., in prep.

HSC quasars at z > 6: candidate selection

Matsuoka et al. incl. TN, 2016, 2017, and the next paper will be submitted soon

Candidates are selected with HSC i, z, y photometry (y-band is powerful).

We calculate the Bayesian quasar probability for every point sources, for selecting our spectroscopic targets.

$$P_Q^B(d) = \frac{W_Q(d)}{W_Q(d) + W_D(d)}$$

$$W_{Q/D}(d) = \int S(p) Pr(\det|p) Pr(d|p) dp$$
d: mag of HSC bands
p: luminosity, redshift, spectral type
S: surface density of objects with *p*
Pr(det|*p*): detection probability

under the current sensitivity

Pr(d|p) : probability that objects with p
will be observed as d

>60 quasars at 5.7 < z < 6.9 have been newly discovered!!

Some quasars show strong outflow features \rightarrow They may be objects in the "blowing-out" phase

C

SMBH mass of HSC quasars at z>6

SMBH mass of HSC quasars at z>6

49			Redshift ^a	y^b_{AB} (mag)	Instrumen	t	t_{\exp}^c (hour)
		39+0207	6.26	22.33	Gemini/G	NIRS	2.7
HSC J1 HSC J2		08-0200	6.2	22.05	Gemini/Gl	NIRS	3.7
		16-0016	6.09	22.94	Gemini/Gl	NIRS	9.0
H	HSC J0859+0022		6.39	23.23	VLT/X-SHO	OOTER	7.2 (NIR) 6.5 (VIS)
B 46	HSC J120	05-0000 ^d	6.7-6.9	22.61	VLT/X-SHO	OOTER	0.8 (NIR) 0.7 (VIS)
		ID	Мвн(×10 ⁸	M _{sun})	L _{bo}	/L _{Edd}
Onoue et al. (incl. TN) in prep.		ID J2239	Мвн((<mark>×10</mark> 8 3.1±1	M _{sun}) .9	L _{bo} 0.23	<mark>⊮/L_{Edd}</mark> 3±0.07
Onoue et al. (incl. TN) in prep.		ID J2239 J1208	М _{ВН} (8	(<mark>×10⁸</mark> 3.1±1 2.5±0	M _{sun}) .9 .2	L _{bo} 0.23 0.67	3±0.07 7±0.09
Onoue et al. (incl. TN) in prep. Number density of SMBHs with	n	ID J2239 J1208 J2216	Мвн(2 ; 2	(<mark>×10⁸</mark> 3.1±1 2.5±0 5.1±1	M _{sun}) .9 .2 .6	Lbo 0.23 0.67 0.15	3±0.07 7±0.09
Onoue et al. (incl. TN) in prep. Number density of SMBHs with $M_{\rm BH} \sim 10^{8-9} M_{\rm sun}$ at $z \sim 6$ much	n	ID J2239 J1208 J2216 J0859	Мвн(2 6 6 0.	(<mark>×10⁸)</mark> 3.1±1 2.5±0 6.1±1 17±0	Msun) .9 .2 .6 .04	Lbo 0.23 0.67 0.15	A/LEdd 3±0.07 7±0.09 5±0.05

ALMA [CII]158 spectra of HSC quasars at z>6

Izumi, Onoue, Shirakata, Nagao, et al., submitted

Galaxy-SMBH coevolution in the early Universe

 $M_{\rm BH}/M_{\rm gal}$ of low-luminosity quasars looks consistent to the ratio seen in low-z, while high-luminosity quasars show significant deviation.

Probably the results for high-luminosity quasars are affected by selection effects.

Galaxies and SMBHs experienced the coevolution with keeping their flux ratio.

Radio galaxies: in the final phase of SMBH growth

RGs are characterized by high $M_{\rm BH}$ and low accretion rate \rightarrow RGs are in the final phase of the growth of SMBHs

Radio galaxies: in the final phase of galaxy growth

RGs are hosted by massive quiescent galaxies even at high-z \rightarrow RGs are in the final phase of the growth of massive galaxies Only few RGs have been identified so far...

 \rightarrow new survey needed \rightarrow HSC !!

Radio galaxies: SDSS-RGs vs. HSC-RGs

HSC-FIRST search for radio galaxies

- ~ larger "radio-loudness" objects than SDSS-FIRST
- ~ higher redshift (~1-2) than SDSS-FIRST (~0-1)

Summary

- > Toward understanding the total picture of the SMBH evolution
 - ~ focusing on dusty AGNs, quasars, and radio galaxies
 - ~ utilizing the HSC-SSP data combined with multi-wav. data
- HSC search for dusty AGNs in dust-obscured galaxies (DOGs)
 - ~ HSC+WISE \rightarrow DOGs (AGN-dominated + SF-dominated)
 - ~ Blue-excess DOGs: in the "blowing-out" phase?
- > HSC search for quasars at z > 6
 - ~ discovery of new >60 quasars at z > 6
 - ~ NIR spectroscopy \rightarrow many SMBHs with $M_{\rm BH}$ ~ 10⁸⁻⁹ $M_{\rm sun}$
 - ~ ALMA \rightarrow galaxy-SMBH coevolution with constant $M_{\rm BH}/M_{\rm gal}$
- HSC search for radio galaxies
 - HSC is powerful to find RGs with a larger radio loudness
 & higher redshift
 - ~ follow-up spectroscopy now on-going (and waiting for PFS!!)

