Status of SSP Survey

Satoshi Miyazaki National Astronomical Observatory of Japan 2018/02/10 Shingakujutsu Symposium @ Tohoku University

HSC

Satoshi Miyazaki

HSC/NAOJ

HSC	Summary					
	Survey Speed					
Camera	CCD	AOmega	in operation			
DECam	BI-FD	30.0	2012			
HSC	BI-FD •	91.3	2012			
LSST	BI-DD 🔵	347.8	(2020?)			
NAOJ	I		HSC			

Image Size Statistics

HSC SSP Survey: Three layers

HSC Progress of HSC SSP Survey

band	area (deg²)	Finished ptgs	completeness	expected (ptgs)*	balance (ptgs)	balance (hours)**	Updated
g	548.2	1867 / 3672	0.51	1718	149	-6	2018 Jan 10
r	609.4	2071 / 3672	0.56	1718	353	-15	2017 Sep 20
i	386.1	2184 / 5508	0.40	2577	-393	22	2018 Jan 17
Z	484.0	2603 / 5508	0.47	2577	26	-1	2017 Sep 27
У	453.5	2566 / 5508	0.47	2577	-11	1	2018 Jan 09

~ 170 nights (56 %) have been used

Survey Status

Status

- ~ 170 nights done with ~ 80 % of the planned pace
 - Weather prospect was a bit optimistic.
 - More frequency of the filter exchanges to carry out time-domain survey
 - i-band requires good seeing, which causes more delay

Countermeasures being considered

- Reduction of CCD readout time
- relax seeing constraint in HSC-i band

Collaborations with external teams

- Established collaborations with external groups, initiated by approaches from the external groups (not from us)
- Exchanged MOU and now carrying out the collaboration
 - Spitzer/IRAC data (SPLASH; Peter Capak + COSMOS): 2012 Def -, UltraDeep fields, galaxy evolution
 - CFHT U-band data (scientists from Canada, France, China): 2014Aug -, ~320 CFHT hours (270hrs already taken), galaxy evolution, photo-z
 - UKIRT NIR (JHK) data (Arizona/Steward): 2014Aug-, ~240 UKIRT hours (205hrs taken), galaxy evolution, photo-z
 - Keck spectra (Caltech/JPL): 2016-, ~40 Keck nights (33 Keck nights+200hrs VLT+3 MMT nights), photo-z, galaxy evolution
 - Atacama Cosmology Telescope (ACT) CMB data (ACT group): Sunyaev-Zel'dovich clusters, CMB lensing
 - XMM-XXL X-ray data (XXL team): galaxy clusters, AGN

HSC

eROSITA

- MoU with eROSITA-DE (2017)
 - Collaboration on overlapped survey area
 - Shallow (Txmm ~ 2 ks) but wide (>~ 500 deg^2)

How is it like?

Try

<u>hscmap.mtk.nao.ac.jp</u>

and use the bookmarks its menu to enjoy the uniqueness

Public Data Release

February 2017

~ 100 deg^2 Full depth

https://hsc-release.mtk.nao.ac.jp

PASJ HSC Special Issue

Advantage of HSC

Sharper image -> more resolved galaxies -> finer kappa maps

HSC

~I.3 deg

HSC (~20 gals/arcmin², ~0.6H)c

Advantage of HSC

More peaks identified on the kappa map

NAOJ

Aperture Mass Map

XMM magLimit=24.5 r0=1.5 gauss (satoshi 2017/02/01 16:42:45)

Stacking of RASS images

Stack around shear selected clusters

Stack around selected MCXC clusters (Lx > L expected from Mth)

 $L_X = (1.5 \pm 0.3) \times 10^{44} \mathrm{erg s}^{-1}$

 $L_X = (3.1 \pm 0.2) \times 10^{44} \mathrm{erg s}^{-1}$

Radial Mass Profile of DM halo

Stack of shear selected clusters

<u>M-c Relation</u>

HSC Throughput Monitor of HSC

Throughput Monitor

Monochromator Light Source

HSC

iHR320

Ready for Installation but delayed due to the M1 coating rescheduled... Should be ON this fall.

Fiber Bundles

HPK CMOS

近赤外に高い感度をもつ APS (Active Pixel Sensor)タイプ のCMOS エリアイメージセンサです。タイミング発生回路、バイ アス発生回路、アンプ、A/D変換器を内蔵しており、オールデジ タル入出力のため取り扱いが容易です。

型名	画素サイズ [µm (H) × µm (V)]	有効画素数	フレームレート (フレーム/s)	パッケージ	写真	専用駆動回路
NEW S13101	- 7.4 × 7.4	1280 × 1024	146	セラミック		
NEW S13102		640 × 480	78			

Commercially Available

HPK CMOS

~ 2019

Subaru Prime Focus 30 arcmin diameter

Expected QE

NAOJ

Thank you