Carbon-enhanced metal-poor stars as a consequence of inhomogeneous metal mixing

Today on arXiv:1812.01820

Carbon-enhanced metal-poor stars

see also:
Piercarlo,
Suda-san,
this afternoon

Introduction

Saga database,

Suda-san

Is iron well mixed with alpha-elements?

Aspherical Explosions (Tominaga-san, Rana)?

Chiaki-san & Britton: homogeneous mixing (Z+H) only on scales <10pc See also Ritter+15,16, Sluder+16

After PopIII SN: several clumps may form

New Scenario

Carbon-enhanced metal-poor stars as a consequence of inhomogeneous mixing of metals in the interstellar medium?

New Scenario

Characteristic Timescales

Kelvin-Helmholtz:
$$t_{\rm KH} = 0.1\,{\rm Myr}\left(\frac{M_*}{10\,{\rm M}_\odot}\right)^2\left(\frac{R_*}{5.3\,{\rm R}_\odot}\right)^{-1}\left(\frac{L_*}{5750\,{\rm L}_\odot}\right)^{-1}$$

LW dissociation:
$$t_{\rm dis} = 0.2 \, {
m Myr} \left(\frac{M_{
m clump}}{1000 \, {
m M}_{\odot}} \right)^{1/3} \left(\frac{n}{10^3 \, {
m cm}^{-3}} \right)^{2/3} \left(\frac{D}{10 \, {
m pc}} \right)^2$$

Collapse time: $t_{coll} = max(t_{ff}, t_{cool})$

Cooling Rate:
$$\frac{\Lambda_{\text{CII}}}{\text{erg cm}^{-3} \text{ s}^{-1}} = 4.8 \times 10^{-21} \left(\frac{n_H}{10^3 \text{ cm}^{-3}} \right)^2 \exp \left(-\frac{92 \text{ K}}{T} \right) \times 10^{[\text{C/H}]}$$

Condition:
$$t_{coll1} + t_{KH} + t_{diss} < t_{coll2}$$

$$\Delta[C/H] > [C/H] + 3.6 + \log_{10} \left(\frac{13000 + 2 \times 10^5 d_{10}^2 n_3^{2/3} + 1.5 \times 10^6 n_3^{-1/2}}{1.7 \times 10^6} n_3 \right)$$

Characteristic Timescales, illustrated

Methodology

Required Inhomogeneity

Results

Required Inhomogeneity

Results

Comparison to Observations

- 0-22% of CEMP-no stars can be explained for ∆[C/H]~1
- \triangleright up to 89% for \triangle [C/H]~2

Inhomogeneous Mixing: The Enemy of "Stellar Archaeology as a Time Machine to the First Stars"

yt: "Color Ink Drops in Water Slow Motion HD" by Abracadabra TV

Outlook

A novel formation scenario for carbon-enhanced metal-poor stars

- 0-89% of CEMP-no stars could have formed by inhomogeneous metal mixing
- ▶ Caveats: only carbon (no dust or oxygen), simplistic analytical treatment
- Mathematica notebook public on gitlab
- Next step: 3D simulations
- Inhomogeneous metal mixing: general importance for interpreting stellar abundance patterns

