The First Supernovae and the Origins of Metal-poor Stars

Ke-Jung (Ken) Chen 陳科榮 ASIAA

Collaborators: Stan Woosley(UCSC), Alex Heger (MOCA), Dan Whalen (ICG), Volker Bromm (UT-Austin), Ralf Klessen (ITA), Katharina Wollenberg (ITA) Shingo Hirano (Kyushu), Tilman Hartwig (IPMU)

中央研究院 天文及天文物理研究所 ACADEMIA SINICA Institute of Astronomy and Astrophysics

TAICOAN

ASIAA Folks at this meeting. (contributing 2 talks+ 2 posters)

Home of ASIAA@NTU

Time Machine

Cosmic Dawn

Talks by Takashi, Shingo, Anna

Courtesy of Hirano

Where were the metals from? Core-collapse Supernovae Explosions

Courtesy of Jason Nordhaus

Ο

Stellar Feedback of Pop III Stars Inputs to Cosmological Simulations

Mass	MS	post-MS	total	fates	metals (SN/HN)
(M _☉)	(Myr)	(Myr)	(Myr)		(M _☉)
15	9.478	1.031	10.51	SN	1.388
30	5.208	0.509	5.77	BH, HN	6.876
45	3.995	0.394	4.39	BH, HN	13.26
60	3.426	0.345	3.77	$\rm BH, HN$	20.66

Table 10.1 Stellar lifetimes and fates

Supernovae

\mathbf{X}^{a}	Type	Masses	E^a	mass ejection	Notes
		(M _☉)	(B)		
S	SN	$\lesssim 25$	1.2	all but $\sim 1.5{\rm M}_\odot$	leaves neutron star
В	BH	$\gtrsim 25$	0	None	complete collapse to BH
Н	HN	$\lesssim 25$	10	$\sim 90\%$	big explosion, leaves black hole

Table 10.2 Summary of assumed stellar fate characteristics: a sentinel used in model names to indicate fate of star. b Explosion energy.

Padiation	Mass	HI	HeI	HeII
Taulation	(M _☉)	(10^{63})	(10^{63})	(10^{61})
	15	0.64	0.16	0.10
	30	1.82	0.72	1.37
	45	2.98	1.45	4.34
	60	4.18	2.21	8.31
	-			

Table 10.3 Number of ionizing photons emitted over the lifetime of a star.Paving the highway for chemical enrichment

Chen, Bromm, Heger+ ApJ (2015)

Stellar Feedback of Pop III Binaries Inputs to Cosmological Simulations

Binary	HI HeI		HeII	t^a_*
	(10^{63})	(10^{63})	(10^{61})	(Myr)
S30+S30	3.64	1.44	2.74	5.77
S45 + S15	3.62	1.61	4.43	10.51
S60	4.18	2.21	8.31	3.77

Case	Masses	Separation	Fate	Fate	metals (SN/HN)
	(M _☉)	(distance)	1	2	(M _☉)
I	30 + 30	wide	HN	HN	13.74
II	30 + 30	wide	BH	BH	0.00
III	45 + 15	close	BH		0.00
III	45 + 15	close	HN		13.26
IV	60		HN		20.66

Poster by Sung-Han Tsai

Radiative+Supernova Feedback

External Enrichment Channel

Chemical Enrichment in the Universe?

Cosmologist's Midas Touch

Resolving the small scales to understand mixing

Multi-code Simulation Approaches 1D²Kepler/ZEUS+ 2D ZEUS+ 2D/3DCASTRO

SN enrichment in the realistic setup

How deep can the metal go ??

Chen+ ApJ 844 111 (2017)

It requires very massive stars to do external enrichment

Mixing of the First Supernovae Metal

Chia-Jung Hsu Chalmers University of Technology

- ZEUS-MP and FLASH
- Supernova in a photo-evaporated halo
- 15 solar-mass star with 10⁵¹ erg energy
- 10⁶ solar-mass halo

See Chia-Jung's Poster

JWST may have a chance to check these scenarios First light is expected in 2021?

Many thanks for your attention

My work has been kindly supported by:

