The recent discovery of two extremely metal-poor dwarf stars in the Galactic halo

**David S. Aguado** 

Jonay I. González Hernández Carlos Allende Prieto Rafael Rebolo



Kavli IPMU Tokyo 20181203



## **Introduction: The Early Universe**

## The first stars and their descendants

Massive blue star (100 solar masses)

**Blue giant** 

ONE OF THE FIRST STARS would have been extremely massive — 100 solar masses in this example — formed mostly from hydrogen, helium, and a tiny amount of lithium gas. After just a few million years, the star burned its fuel and ended in fantastic style: as a huge explosion. The star's material — including heavy elements — was ejected. Either its core collapsed as the first black hole, or the explosion was powerful enough to blow up completely and scatter the star's material throughout space.

#### **POPULATION III**

Brilliant explosion

## **Introduction: The Early Universe**

#### **Metal-poor stars**



4MOST collaboration





~10,000,000 spectra from SDSS and LAMOST or PRISTINE and J-plus



~500 candidates to observe with ISIS at WHT or with OSIRIS at GTC



~3,000,000 spectra from SDSS and LAMOST



Aguado+ 2016



6 UMP stars



~500 candidates to observe with ISIS at WHT or with OSIRIS at GTC







#### Aguado+ 2016

- FERRE is a FORTRAN code developed by Allende Prieto (Allende+ 2014)
- FERRE is able to compare data with a grid of theoretical models
- FERRE searches for the best solution on the N space paremeters
- FERRE interpolates between the nodes of the grid







#### Allende Prieto+ (2014)



#### Aguado+ (2017a)



Aguado+ (2017a)



Allende Prieto+ (2015) Frebel+ (2015) Aguado+ (2017a)

#### Aguado+ (2017b)



# 3-The Discovery of J0815+4729

Aguado+ (2018a)



# **3-The Discovery of J0815+4729** Aguado+ (2018a) 極超金属欠乏星



### 4-The Discovery of J0023+0307

#### Aguado+ (2018b)



# **4-The Discovery of J0023+0307** Aguado+ (2018b) 杨超金属欠乏星 !!!



#### 4-UVES spectrum of J0023+0307

#### Aguado+ (2018, submitted)



## 4-UVES spectrum of J0023+0307 Aguado+ (2018, submitted)



# **4-UVES spectrum J0023+0307** Aguado+ (2018, submitted)



# **4-The Discovery of J0023+0307** Aguado+ (2018, submitted)



### 4-The Discovery of J0023+0307

#### Aguado+ (2018, submitted)

**Table 1**: All the  $T_{eff}$  derived values considered in this work and explained in Section 3

| Source          | Ref. | $T_{\rm eff}$ | $\delta T$ |
|-----------------|------|---------------|------------|
| BOSS spectrum   | (1)  | 6295          | 36         |
| OSIRIS spectrum | (1)  | 6140          | 132        |
| ISIS spectrum   | (1)  | 6188          | 84         |
| (g-z)           | (2)  | 6160          | 100        |
| $H_{lpha}$      | (3)  | 6400          | 150        |
| ${ m H}_eta$    | (3)  | 6165          | 62         |
| IRFM            | (4)  | 6482          | 224        |
| (V-J)           | (5)  | 6481          | 156        |
| (V-H)           | (5)  | 6335          | 186        |
| $(V-K_s)$       | (5)  | 6615          | 212        |
| Mean V-X        | (5)  | 6474          | 145        |
| (V-I)           | (5)  | 5992          | 157        |
| (V-I)           | (6)  | 5997          | 130        |

References: (1) Aguado et al. (2018a), (2) François et al. (2018), (3) This work, (4) González Hernández & Bonifacio (2009), (5) Casagrande et al. (2010), (6) Frebel et al. (2018)

#### **5-Summary**



#### **5-Summary**



#### **5-Summary**





