The recent discovery of two extremely metal-poor dwarf stars in the Galactic halo

David S. Aguado

Jonay I. González Hernández
Carlos Allende Prieto
Rafael Rebolo

Kavli IPMU
Tokyo 20181203
Introduction: The Early Universe

The first stars and their descendants

First star

Massive blue star (100 solar masses)

Blue giant

ONE OF THE FIRST STARS would have been extremely massive — 100 solar masses in this example — formed mostly from hydrogen, helium, and a tiny amount of lithium gas. After just a few million years, the star burned its fuel and ended in fantastic style: as a huge explosion. The star’s material — including heavy elements — was ejected. Either its core collapsed as the first black hole, or the explosion was powerful enough to blow up completely and scatter the star’s material throughout space.

POPULATION III
Introduction: The Early Universe

Metal-poor stars

4MOST collaboration
1-Methodology to find Metal-Poor Stars
1-Methodology to find Metal-Poor Stars

\~10,000,000 spectra from SDSS and LAMOST or PRISTINE and J-plus
1-Methodology to find Metal-Poor Stars

≈3,000,000 spectra

≈500 candidates to observe with ISIS at WHT or with OSIRIS at GTC

≈3,000,000 spectra from SDSS and LAMOST
1-Methodology to find Metal-Poor Stars

Aguado+ 2016
1-Methodology to find Metal-Poor Stars

- ~3,000,000 spectra from SDSS and LAMOST
- ~500 candidates to observe with ISIS at WHT or with OSIRIS at GTC
- 6 UMP stars

- ~3,000,000 spectra from SDSS and LAMOST
1-Methodology to find Metal-Poor Stars

Aguado+ 2016

![Graph showing normalized flux vs. wavelength with peaks labeled MgI, FeII, MgI, FeI and a spectrum for J0140+2344.](image)
2-Spectroscopic analysis with FERRE

- FERRE is a FORTRAN code developed by Allende Prieto (Allende+ 2014)
- FERRE is able to compare data with a grid of theoretical models
- FERRE searches for the best solution on the N space parameters
- FERRE interpolates between the nodes of the grid
2-Spectroscopic analysis with FERRE
2-Spectroscopic analysis with FERRE

Allende Prieto+ (2014)
2-Spectroscopic analysis with FERRE

Aguado+ (2017a)
2-Spectroscopic analysis with FERRE

Aguado+ (2017a)
2-Spectroscopic analysis with FERRE

SDSS J1313−0019

T=5525 K logg=3.6 [Fe/H]=−4.7 [C/Fe]=2.8

Allende Prieto+ (2015)
Frebel+ (2015)
Aguado+ (2017a)
2-Spectroscopic analysis with FERRE

Aguado+ (2017b)
3-The Discovery of J0815+4729

Aguado+ (2018a)
3-The Discovery of J0815+4729

Aguado+ (2018a)

極超金属欠乏星！
4-The Discovery of J0023+0307

Aguado+ (2018b)
4-The Discovery of J0023+0307

Aguado+ (2018b) 極超金属欠乏星 !!!
4-UVES spectrum of J0023+0307

Aguado+ (2018, submitted)
4-UVES spectrum of J0023+0307

Aguado+ (2018, submitted)
4-UVES spectrum J0023+0307

Aguado+ (2018, submitted)
4-The Discovery of J0023+0307

Aguado+ (2018, submitted)
4-The Discovery of J0023+0307

Aguado+ (2018, submitted)

Table 1: All the T_{eff} derived values considered in this work and explained in Section 3

<table>
<thead>
<tr>
<th>Source</th>
<th>Ref.</th>
<th>T_{eff}</th>
<th>δT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOSS spectrum</td>
<td>(1)</td>
<td>6295</td>
<td>36</td>
</tr>
<tr>
<td>OSIRIS spectrum</td>
<td>(1)</td>
<td>6140</td>
<td>132</td>
</tr>
<tr>
<td>ISIS spectrum</td>
<td>(1)</td>
<td>6188</td>
<td>84</td>
</tr>
<tr>
<td>(g-z)</td>
<td>(2)</td>
<td>6160</td>
<td>100</td>
</tr>
<tr>
<td>H_α</td>
<td>(3)</td>
<td>6400</td>
<td>150</td>
</tr>
<tr>
<td>H_β</td>
<td>(3)</td>
<td>6165</td>
<td>62</td>
</tr>
<tr>
<td>IRFM</td>
<td>(4)</td>
<td>6482</td>
<td>224</td>
</tr>
<tr>
<td>(V-J)</td>
<td>(5)</td>
<td>6481</td>
<td>156</td>
</tr>
<tr>
<td>(V-H)</td>
<td>(5)</td>
<td>6335</td>
<td>186</td>
</tr>
<tr>
<td>(V-Ks)</td>
<td>(5)</td>
<td>6615</td>
<td>212</td>
</tr>
<tr>
<td>Mean V-X</td>
<td>(5)</td>
<td>6474</td>
<td>145</td>
</tr>
<tr>
<td>(V-I)</td>
<td>(5)</td>
<td>5992</td>
<td>157</td>
</tr>
<tr>
<td>(V-I)</td>
<td>(6)</td>
<td>5997</td>
<td>130</td>
</tr>
</tbody>
</table>

References: (1) Aguado et al. (2018a), (2) François et al. (2018), (3) This work, (4) González Hernández & Bonifacio (2009), (5) Casagrande et al. (2010), (6) Frebel et al. (2018)
5-Summary

![Graph showing the relationship between Teff and [Fe/H]. A single point is marked at 1984.](image)
5-Summary

![Graph showing Teff vs. [Fe/H] with a data point in 1984]
5-Summary
ありがとう！