The impact of metal depletion on convective mixing prescriptions in 1D stellar evolution models

Stellar Archaeology as a Time Machine to the First Stars

Kavli Institute for the Physics and Mathematics of the Universe

5 December 2018

Dr. Meridith Joyce RSAA Postdoctoral Fellow Australian National University

An ancient battle...

An ancient battle...

Components of a Stellar Structure and Evolution Code

1D Stellar Structure and Evolution Codes (SSECs)

DSEP- Dartmouth Stellar Evolution Program

MESA- Modules for Experiments in Stellar Astrophysics

GYRE, Y2, PARSEC, BaSTI, Victoria-Regina, Monash, Geneva, others*

(*don't yell at me if I forgot yours)

Question:

How do we model 3D stellar physics with 1D codes?

Poorly.

1D vs 3D

Observations (SST)

1D simulation

Slide credit: Anish Amarsi

1D vs 3D

Modeling Scale:

1D vs 3D

tip of this

line:

Modeling Scale:

whole image:

Physical time: 15 Gyr

Duration of a conference dinner

Nonconvective

Body of Convective Region

- Boundary layer

Nonconvective ->

Negative kinetic flux & transport asymmetry

Nonconvective \rightarrow

Body of Convective Region Assuming rigidity

← Boundary layer

← Boundary layer

Nonconvective ->

Negative kinetic flux & transport asymmetry

Nonconvective -

Body of Convective Region Nonconvective ->

Negative kinetic flux & transport asymmetry

Nonconvective \rightarrow

Body of Convective Region

Nonconvective ->

"Convective parcels" are nonsense

Study 1:

Using convective overshoot to address low-metallicity modeling discrepancies

Physics of the Red Giant Branch Bump

Comparing between theory and observation

Joyce & Chaboyer 2015, ApJ

[Fe/H]

Resolving discrepancy with convective overshoot

increasing overshoot...

- allows for more "transmission" of material between convective and radiative zones

- moves the boundary of the convective envelope deeper into the interior

- RGBB occurs earlier, at higher temperatures and lower luminosities

Joyce 2018, dissertation

Empirically calibrating the mixing length for 6 stars with [Fe/H] < -2.3

Mixing Length Theory (MLT) Formalism

$$F_{\text{conv}} = \frac{1}{2} \rho v c_p T \frac{\lambda}{H_P} (\nabla_T - \nabla_{\text{ad}}).$$
$$\alpha_{\text{MLT}} = \frac{\lambda}{H_P} \quad \nabla_T = \left(\frac{d \ln T}{d \ln P}\right).$$

-discrete parcels consist of fluid which is in pressure, but not thermal, equilibrium

-parcels move along vertical trajectories

-distance which parcels can travel before denaturing is the "mixing length"

 $-\alpha_{_{MLT}}$ represents mean free path measured in pressure scale heights, $H_{_P} = d \ln(P) / d \ln(T)$

Not All Stars are the Sun

© Joyce & Chaboyer, 2018

Mixing length is calibrated by minimizing differences between modeled and measured values of the solar radius, luminosity, and surface abundance...

Not All Stars are the Sun

 $\ensuremath{\mathbb{C}}$ Joyce & Chaboyer, 2018

Mixing length is calibrated by minimizing differences between modeled and measured values of the solar radius, luminosity, and surface abundance...

but these features are specific **to a particular star!**

Common Approach

- Assume a solar mixing length in other stellar models, ad hoc. Choose not to worry about it
- Adopt a "standard" choice for input physics in models. Choose not to worry about it
- Maybe explore how mixing length varies with some input (e.g. metallicity) for solar analogs

- Remove the Sun entirely. Can we directly calibrate the mixing length in conditions that are as non-solar as possible?
- What happens when we change our assumptions about the modeling physics?
- Can we extrapolate the behavior of the mixing length as a function of stellar phase and mass?

Six metal-poor calibrators:

PROPERTIES OF FITTED OBJECTS

Four physical configurations in DSEP:

not taking physics for granted

not the Sun

Solar-Calibrated Mixing Length Values for Various Physical Configurations

Atmosphere	$\eta_{ m D}$	$lpha_{\odot}$	$Y_{ m in}$	Z_0
PHOENIX	1.0	1.9258	0.275	0.019
Grey	1.0	1.8205	0.282	0.019
PHOENIX	0.5	1.8292	0.277	0.0176
PHOENIX	1.5	1.9780	0.282	0.0192

Key point!

These six calibrators span the HR diagram at "fixed" metallicity ([Fe/H]=~-2.3), allowing us to isolate possible variations with stellar phase while focusing on depleted stars

Object: HD140283

Phase: Sub-giant

Object: HD140283

We've tried to **isolate metallicity as a variable** and compute $\alpha_{\rm MLT}$ as a function of location in the HR diagram

Red giant: ~10% below solar

Sub-giant: SUPER LOW! Half the solar value!

Main Sequence: inconclusive! Need more of these candidates

Big picture: solar value isn't right; α_{MLT} should probably adapt over the course of a single evolutionary calculation

Summary: Best-Fitting Mixing Lengths to All Objects								
		Default	Average					
Object	Evolutionary Phase	$\alpha_{\rm MLT}$	$lpha_{ m MLT}/lpha_{\odot}$	$lpha_{ m MLT}/lpha_{\odot}$	Age (Gyr)	Fit Method		
HD140283	subgiant	1.3	0.52	0.36-0.68	12.5	stellar track		
M92	Red Giant	1.75	0.91	0.91	13	isochrone		
HIP46120	main sequence	1.85	0.96	0.92	12	isochrone		
HIP54639	main sequence	0.7	0.36	0.33	13	isochrone		
HIP106924	main sequence	1.1	0.57	0.56	13	isochrone		
Wolf1137	main sequence	1.95	1.01	0.96	12	isochrone		

Bonus Problem!

Are there issues with adopting solar MLT in other non-solar environments?

Bonus Problem!

Are there issues with adopting solar MLT in other non-solar environments?

Yes! See Joyce & Chaboyer 2018b for MLT calibrations to α Cen A & B! (a talk for another conference...)

To hone MLT properly in stellar models....

Have four, need more- Brian & Christina on the job!

aCen A&B are near here, but not low [Fe/H]

HD 140283

One of these too! But is structure too convoluted?

To hone MLT properly in stellar models....

Have four, need more- Brian & Christina on the job!

aCen A&B are near here, but not low [Fe/H]

HD 140283

One of these too! But is structure too convoluted?

(1) There is strong potential for using metal-poor RGBB measurements to constrain the size and mass of surface convection zones in low-mass stars

(1) There is strong potential for using metal-poor RGBB measurements to constrain the size and mass of surface convection zones in low-mass stars

(2) In order to untangle mass-metallicitly-MLT degeneracy, we must build statistical populations of metal-poor stars to which we can empirically calibrate $\alpha_{_{MLT}}$

(1) There is strong potential for using metal-poor RGBB measurements to constrain the size and mass of surface convection zones in low-mass stars

(2) In order to untangle mass-metallicitly-MLT degeneracy, we must build statistical populations of metal-poor stars to which we can empirically calibrate $\alpha_{_{MLT}}$

(3) Every publicly available isochrone database adopts a solar value of the mixing length, yet we know this is not sufficient! (Tayar et al. 2017; Joyce & Chaboyer 2018a, 2018b; Liu et al. 2018, Joyce et al. in prep)

(1) There is strong potential for using metal-poor RGBB measurements to constrain the size and mass of surface convection zones in low-mass stars

(2) In order to untangle mass-metallicitly-MLT degeneracy, we must build statistical populations of metal-poor stars to which we can empirically calibrate $\alpha_{_{MLT}}$

(3) Every publicly available isochrone database adopts a solar value of the mixing length, yet we know this is not sufficient! (Tayar et al. 2017; Joyce & Chaboyer 2018a, 2018b; Liu et al. 2018, Joyce et al. in prep)

(4) Empirically-removed treatment of convection in 1D evolutionary models is **unacceptable and unnecessary** in the modern observational climate