Contribution ID: 4

Metal pollution of low-mass Population III stars through accretion of interstellar objects

Wednesday, 5 December 2018 12:30 (20 minutes)

We calculate accretion mass of interstellar objects (ISOs) like Oumuamua onto low-mass population III stars (Pop. III survivors), and estimate surface pollution of Pop. III survivors. An ISO number density estimated from the discovery of Oumuamua is so high (~ 0.2 au⁻³) that Pop.~III survivors have chances at colliding with ISOs about 10⁵ times per 1~Gyr. 'Oumuamua itself would be sublimated near Pop.~III survivors, since it has small size, ~ 100 m. However, ISOs with size ≥ 3 km would reach the Pop. III survivor surfaces. Supposing an ISO cumulative number density with size larger than D is $n \propto D^{-\alpha}$, Pop. III survivors can accrete ISO mass $\geq 10^{-16} M_{\odot}$, or ISO iron mass $\geq 10^{-17} M_{\odot}$, if $\alpha < 4$. This iron mass is larger than the accretion mass of interstellar medium (ISM) by several orders of magnitude. Taking into account material mixing in a convection zone of Pop.~III survivors, we obtain their surface pollution is typically [Fe/H] ≤ -8 in most cases, however the surface pollution of Pop.~III survivors with 0.8 M_{\odot} can be [Fe/H] ≥ -6 because of the very shallow convective layer. We first show the importance of ISOs for the metal pollution of Pop.~III survivors.

Affiliation

The University of Tokyo

Talk/Poster

Talk

Primary authors: Dr TANIKAWA, Ataru (The University of Tokyo); Prof. SUZUKI, Takeru (The University of Tokyo); Dr DOI, Yasuo (The University of Tokyo)

Presenter: Dr TANIKAWA, Ataru (The University of Tokyo)

Session Classification: EMP Stars: Theory