Nucleosynthesis yield of primordial supernovae by bipolar jet-induced explosion

Shing-Chi Leung

Kavli IPMU, The University of Tokyo

Collaborated with Prof. Ken.ichi Nomoto

and Prof. Sachiko Tsuruta (Montana State)

Stellar Archaeology as a Time Machine to the First Stars

What do I do in Kavli IPMU?

• Numerical hydrodynamics and nucleosynthesis of supernova

Thermonuclear runaway In Type Ia and Electron Capture Supernova Pulsation Pairinstability supernova

Massive star, collapsar and Jet formation 2

Black hole is not the end...

Collapsar

- Energy deposition from black hole accretion disk
- Gamma ray connection

Example: SN1998bw – GRB980425 Connection Long duration GRB

Instability of MHD

The local turbulence amplifies the magnetic field exponentially

- Magnetic Pressure
- Development of Toroidial magnetic field
 - MHD-powered outflow

Radial B-field at 7.5 ms

Moesta et al., Nature (2015)

Multi-length-scale problem

Level 3: Stellar envelope > 1000 km Nucleosynthesis in ejecta Gamma ray burst

Level 2: Inside mass black hole 50 km - ~ 1000 km Accretion disk

Level 1: Black hole nearby Rs – 50 km MHD turbulence Advanced nucleosynthesis Neutrino process

Electron capture Neutrino cooling

Magneto-rotational instability General relativity

Not in scale

Metal poor stars

- Carbon-enhanced: [C/Fe]= 1-5
- Fallback of Fe-peak elements
 - Fine tune problem?
 - Robust mechanism?
- Formation path?
 - Why metal poor stars tend to be carbon enhanced?
- Stellar abundance survey

Sivarani et al., Franesca Primas (2006)

Sharma et al., MNRAS (2018)

Bipolar jet is the solution?

- Aspherical energy deposition by jet
 - Higher entropy production
 - Inhomogeneous mixing

Grimmett et al., MNRAS (2018)

ABSTRACT

We investigate the relationship between explosion energy and nucleosynthesis in Population III supernovae and provide nucleosynthetic results for the explosions of stars with progenitor masses of 15 M_☉, 20 M_☉, 30 M_☉, 40 M_☉, 60 M_☉, and 80 M_☉, and explosion energies between approximately 10^{50} erg and 10^{53} erg. We find that the typical abundance pattern observed in metal-poor stars is best matched by supernovae with progenitor mass in the range $15 \text{ M}_{\odot} - 30 \text{ M}_{\odot}$ and explosion energy of $\sim (5-10) \times 10^{51}$ erg. In these models, a reverse shock caused by jumps in density between shells of different composition serves to decrease synthesis of chromium and manganese, which is favourable to matching the observed abundances in metal-poor stars. Spherically symmetric explosions of our models with progenitor mass $\geq 40 \text{ M}_{\odot}$ do not provide yields that are compatible with the iron-peak abundances that are typically observed in metal-poor stars; however, by approximating the yields that we might expect from these models in highly aspherical explosions, we find indications that explosions of stars $40 \text{ M}_{\odot} - 80 \text{ M}_{\odot}$ with bipolar jets may be good candidates for the enrichment sources of metal-poor stars with enhanced carbon abundances.

Level 3: Outside accretion disk

- Depositing energy by bipolar jet
 - Deposition energy
 - Jet duration
 - Jet velocity (kinetic energy ratio)

Tominaga, ApJ 2009

Change of input physics

- Helmholtz equation of state
 - Temperature, composition dependent
- Nuclear Statistical Equilibrium
- WENO 5th order shock capturing scheme
- 495-isotope network post-processing
 - With neutrino neutral/charged processes

Some snapshot of the ejecta (40 solar mass, 0 Z) Tracer particle (Lagrangian perspective) Red: Can escape at the end of simulation

Model parameter survey

Survey on the nucleosynthesis from 2D models

Black-hole progenitor

- Mass: 40, 50, 60, ... 140 M_{sun}
- Metallicity: 0, 0.01, 0.1 Z_{sun}
- Explosion energy $10^{52} 10^{53}$ erg

20080

60000

K (KIT)

80000

100000

Ejecta evolution

Final ejecta at 15.0 s Upper: Distribution using initial position Lower: Distribution using final position

Nucleosynthesis yield

Progenitor mass 15 M_{sun} Ejecta mass ~1 M_{sun} Ejected ⁵⁶Ni: ~0.1 M_{sun}

Preliminary results, Leung et al., (2017, 2018)

Effects of neutrino

Preliminary results, Leung et al., (2018)

 $(Z, A) + v \to (Z, A)^* + v' \to (Z, A - 1) + n + v',$ $\to (Z - 1, A - 1) + p + v',$

Woosley, ApJ (1990)

 $\rightarrow (Z-2, A-4) + \alpha + \nu' . \quad (1)$

And four more exotic neutrino reactions

- -- neutral current reactions X8
- -- charged current reactions X4

Parametrized neutrino luminosity (neutron star type) Neutrino cross section table

Isotope dependent

Very small effects

-- Time delay between neutrino emission and black hole jet?

Level 2: Accretion disk

Question: What is the typical neutrino pattern?

Input physics on the disk behaviour

Preliminary results, Leung et al., (2018)

Stability of accretion disk

Beginning: Freefall of matter onto black hole

>1s Stacking of matter by rotation

Density gradient between free fall channel and disk surface Electron-capture

Accretion Disk oscillation Disk outburst

Preliminary results, Leung et al., (2018)

Neutrino source (thermal neutrino)

1. Mild neutrino right after collapse

2. Much stronger neutrino emission after formation of accretion disk

Preliminary results, Leung et al., (2018)

Conclusion

2D simulation Jet induced explosion

- Realistic EOS
- Neutrino processes

Role of accretion disk to thermal neutrino Future work

• More realistic neutrino emission

THANK YOU!