Statistical properties of substructures around MW-size halos and their implications for the formation of stellar stream

Yu Morinaga (Chiba University) Tomoaki Ishiyama, Takanobu Kirihara, Kazuki Kinjo (Chiba University)

> Stellar Archaeology as a Time Machine to the First Stars 7th December 2018 Kavli IPMU

Introduction

> Tidally disrupted remnants including **stellar streams** inform us their accretion history.

Belokurov+2008

Many early studies...

N-body simulations have been extensively used to reproduce the observed properties and the dynamical evolution of them.

However in a cosmological context, their dynamical evolution is affected by complicated physics...

For example

dynamical friction
 multiple interaction
 evolution history of host galaxies

Hozumi et al. 2014 Fig.1

This work

We use a high-resolution cosmological simulation (Ishiyama et al. 2016)

Particles: 2048³
Boxsize: 8 Mpc/h
m_p: 5.13 × 10³ Msun/h
Softening: 120 pc/h
Nine MW-sized halos

How are these various substructures formed until z=0 in cosmological simulation?

over 24,000 samples

We investigate the relationship between **structural properties** of substructures at z =0 and **orbits** of their progenitors around MW-sized halos in a cosmological context.

Semi-analytic model

Particle Tagging

(De Lucia et al. 2008)

A model to assign stellar mass

(Koposov et al. 2009)

Dark matter halo

Z=0

Stellar component

Zacc

 $Z_{acc} \Rightarrow$ The redshift when the progenitor of substructure was accreted into the host halo

 $\mathbf{M}_{*} = \frac{f_{*} \times (M_{\text{acc}} - M_{\text{rei}})}{(1 + 0.26(V_{\text{crit}}/V_{\text{circ}}(z_{\text{acc}}))^{3})^{3}} + f_{*} \times M_{\text{rei}}$

for $V_{\rm circ,r} < 10 \text{ km s}^{-1}$

$$\mathbf{M}_{*} = \frac{f_{*} \times M_{\text{acc}}}{(1 + 0.26(V_{\text{crit}}/V_{\text{circ}}(z_{\text{acc}}))^{3})^{3}}$$

,where $V_{\rm crit} = 30 \text{ km s}^{-1}$, $z_{\rm rei} = 11$

We treat 10 % of the most-bound DM particles in a progenitor halo at z_{acc} as the stellar component and trace it down to z=0.

We reproduce the observed stellar mass functions in the MW and M31. We analyze the substructures with $M_* > 10^4 M_{\odot}$.

Structural properties of substructures

Quantifying structural properties with

1 Length High \Rightarrow long Low \Rightarrow short

2 Thickness High \Rightarrow thin Low \Rightarrow thick

5

Orbits - Structures

- ✦ It is clear that substructures observed like streams are concentrated in the rather narrow region of the pericenter (10-100 kpc) and apocenter (50-300 kpc) plane.
- ◆ small pericenter and apocenter (< 10 kpc) ⇒ largely disrupted because of strong perturbation
- ◆ large percenter (> 100 kpc) ⇒ less affected by tidal force and keep gravitationally bounded structure

Summary

We can infer the evolution of properties of substructures in terms of accretion redshift and orbital parameters by using cosmological simulation.

✦A large part of streams (~90%) is accreted by their host within

$0.5 \lesssim z_{\rm acc} \lesssim 2.5$.

 Streams are concentrated in the narrow region of pericenter (10-100 kpc) and apocenter (50 – 300 kpc) plane

- ◆ Substructures with high-z_{acc}(> 2.5) suffer from strong tidal forces
 ⇒ They are entirely disrupted and their stellar components are well-mixed
- ◆ Substructures with low-z_{acc} (< 0.5) are less affected by the tidal forces and keep larger pericenter and apocenter
 ⇒ They also keep their gravitational bound structures

 $Z_{acc} \Rightarrow$ The redshift when the progenitor of substructure is accreted into their host