External Enrichment as a Pathway to Metal-Poor Star Formation

Britton Smith San Diego Supercomputer Center

December 5, 2018

My collaborators

Sadegh Khochfar U. of Edinburgh Michael Norman U. of CA, San Diego Brian O'Shea Michigan State U. John Wise Georgia Tech U.

Kelly Johnson, Duna Photography

Purpose: understand the Pop III to Pop II transition

The First Pop II Stars: knowns and unknowns

- * 2 critical metallicities are they both relevant?
 - * 10-5.5 Zo: physical minimum
 - * 10^{-3.5} Zo: most MP stars in MW
- * How/when do we reach these metallicities?
 - * enrichment mechanisms
 - * physical conditions of SF
- What is necessary for fragmentation?
 - * metals
 - * turbulence

Where do the most metal-poor stars come from?

Pop2Prime: metal-enriched stars in a cosmological context

- * Enzo: open-source AMR
- * Cosmology: 0.5 Mpc/h box $10^7 M_{\odot}$ halo at z = 10.
- * Resolution:
 - * 1 M_{\odot} dark matter particles.
 - * AMR: spatial resolution ~ 1 AU.
- * Physics and models:
 - * Star particles: 40 M $_{\odot}$ Pop III star t_{ms} = 3.86 Myr, core-collapse SN (1 β).
 - * Adaptive ray-tracing rad. hydro.
 - Non-eq. H/D/He chemistry, dust, metal cooling with Grackle.
- * Run until collapse with $Z > 10^{-6} Z_{\odot}$.

Grackle: chemistry and cooling as a resource

- Non-eq. H/D/He/dust chemistry, heavy element cooling, UV radiation backgrounds, self-shielding,...
- Library with stable APIs for C, C++, Fortran, Python: used in >14 codes.
- * Optimized and OpenMP parallel.
- Community developed.
- Access to established models, updated rates.
- Disseminate your research, be credited for it.

grackle 3.1 documentation NEXT INDEX Welcome to grackle's documentation! Grackle is a chemistry and radiative cooling library for astrophysical sir Grackle has interfaces for C, C++, Fortran, and Python codes and provid two options for primordial chemistry and cooling: non-equilibrium primordial chemistry network for atomic H, D, b as H₂ and HD, including H₂ formation on dust grains. 2. tabulated H and He cooling rates calculated with the photo-ic Cloudy. tabulated metal cooling rates calculated with <u>Cloudy</u>. • photo-heating and photo-ionization from two UV backgrounds: 1. Faucher-Giguere et al. (2009). 2. Haardt & Madau (2012). 10 support for user-provided arrays 10⁸ The Grackle provides functions t update internal energy; and calcula heats (gamma). ∑ _{10⁵} Contents: 10^{4} Installation 10 Dependencies 10² Downloading $10^{1} \\ 10^{-6} \\ 10^{-5} \\ 10^{-4} \\ 10^{-3} \\ 10^{-2} \\ 10^{-1} \\ 10^{0} \\ 10^{1} \\ 10^{2} \\ 10^{3} \\ 10^{4} \\ 10^{4} \\ 10^{$ n [cm⁻³]

Smith et al. (2017)

grackle.readthedocs.io

ytree: yt for tree data

- merger-tree data from multiple formats
 - * Amiga Halo Finder
 - * Consistent-trees/Rockstar
 - * LHaloTree
- Create merger trees for Gadget FoF/SUBFIND
- incremental tree building, on-demand field loading, derived fields, symbolic units
- re-save trees in optimized format

ytree.readthedocs.io (Smith and Lang, 2018)

External Enrichment

External Enrichment

- Prompt star formation after enrichment: ~25 Myr
- * Star formation from a single Pop III progenitor: Z ~ $2x10^{-5} Z_{\odot}$

Collapse and Fragmentation

Fragmentation and Physical Conditions $(10^{-5} Z_{\odot})$

Smith et al. (2015)

External Enrichment: slightly bigger picture

Fragmentation and Physical Conditions ($10^{-3} Z_{\odot}$)

Metal Enrichment by Pop III

Enrichment of Starless Mini-halos

Summary

- * Check these out/get involved:
 - * grackle.readthedocs.io
 - * ytree.readthedocs.io

- Prompt metal-enriched star formation after a single Pop III SN is possible, but it might be rare.
- * Low mass fragmentation needs dust even at gas-phase Z_{cr}.
- * Singly enriched halos may form stars with a range of metallicities. Not all single-progenitor stars are low-Z.
- * Halos impacted by multiple blast-waves have a range of metallicities. Not all low-Z stars have a single progenitor.