Neutron-capture Nucleosynthesis in Relics of the First Galaxies

Alex Ji Carnegie Observatories

In collaboration with:
Anna Frebel, Josh Simon, Kim Venn,
Terese Hansen, Anirudh Chiti, Kaley Brauer

Ji et al. 2016 Nature, 531, 610 arxiv:1512.01558

Ji & Frebel 2018 *ApJ* 856, 138 arxiv:1802.07272 Ji et al. 2018

ApJ accepted

arxiv:1809.02182

Brauer, Ji et al. 2018 ApJ submitted arxiv:1809.05539

Outline

- Ultra-faint dwarf galaxies
- Neutron-capture nucleosynthesis
- UFDs with large amounts of r-process
- UFDs with low neutron-capture elements
- Connection to Milky Way's halo

History of Milky Way Satellites

No overdensity in 2D

Yes overdensity in 2+2D

All stars

0.3 x 0.3 sq deg

(~1/3 the size of the moon)

Ret II Stars

Fermilab/Dark Energy Survey

Ultra-faint dwarf galaxies

- Low luminosity (~300 30,000 L_{sun})
- Dark-matter-dominated (M/L > 100)
- Metal-poor (Mean [Fe/H] < -2)
- Old (Mean stellar age 13.3 +/- 1 Gyr)
- Solve the missing satellite problem

The stars in each UFD preserve a short, independent burst of early chemical enrichment with a *known environment*!

The ideal place to study metal-poor stars.

Look at a *sample* of UFDs!

Light elements in UFDs

Now with 15 UFDs!

References here:
Feltzing+09, Norris+10,
Gilmore+13,
Ishigaki+14, Frebel+16,
Ji+16acd, Francois+16,
Frebel+10, Koch+08/13,
Nagasawa+18,
Simon+10, Frebel+14,
Roederer+Kirby 14,
Chiti+18, Hansen+17,
Ji+18

A complete homogeneous reanalysis is desperately needed

Alex Ji

Ji et al. 2018

Neutron-capture elements in UFDs

UFDs obviously different than halo stars

Neutron-capture elements are the defining abundance feature of UFDs

Alex Ji

Solar System Abundances

Sneden et al. 2008

s-process: AGB stars

r-process: neutron star mergers (NSMs) and/or supernovae (SNe)

\(\text{number of protons} \)

N (number of neutrons)

Video: JINA-CEE Meyer and Surman

Neutron-capture elements in UFDs

Two UFDs are r-process enriched!

The others have very low neutron-capture

Alex Ji

Outline

- Ultra-faint dwarf galaxies
- Neutron-capture nucleosynthesis
- UFDs with large amounts of r-process
- UFDs with low neutron-capture elements
- Connection to Milky Way's halo

Ret II stars >100x higher neutron-capture element abundances than other UFDs

gray points: Milky Way halo stars

Halo stars: Frebel 2010. UFDs: Francois+ 2016; Frebel+ 2010, 2014, 2016; Hansen+17, Ji+2016, 2018; Koch+2013; Roederer+Kirby 2014; Simon+2010; Nagasawa+2018; Venn+2017, Kirby+2017

Ret II stars > 100x higher neutron-capture element abundances than other UFDs

A pure r-process pattern! <1% contamination

The Rare and Prolific r-process event in Ret II

- Rate: 1-2 r-process events out of 15 UFDs
 - → 1 event per ~1000-2000 CCSNe

Population synthesis: ~1 event per 1000 CCSNe GW170817: ~1 event per ~200 CCSNe

Ask me about the delay time problem in questions

- Yield: measure [Eu/H] ~ -1.3,
 estimate gas dilution mass 10⁵-10⁷ M_{sun}
 - \rightarrow 10-4.5±1 M_{sun} Eu

NSM simulations: ~10-4.3±1 M_{sun} Eu

GW170817: $\sim 10^{-4.7 \pm 0.5} M_{sun} Eu$

GW170187 estimates: Côté et al. 2018

Broadly consistent with a neutron star merger

Other rare and prolific r-process sites

- Magnetorotationally driven jets
 Winteler et al. 2012, Nishimura et al. 2015, Tsujimoto et al. 2017, Moesta et al. 2018, ...
- Disk winds in collapsars
 Siegel et al. 2018
- Common-envelope jets supernovae
 Grichener & Soker 2018
- Dark matter-induced implosions
 Bramante & Linden 2016
- And probably many others...

It is very hard to tell the difference with stellar archaeology

All three peaks are made in one r-process event

Shibagaki et al. 2016

The solution is NOT adding up ejecta from multiple sites!

But, all three processes can occur in the same site

22h with Magellan/MIKE

Models: Eichler et al. 2015, Wu et al. 2016, Nishimura et al. 2015/2017; Ji + Frebel 2018

Neutron star merger components

Blue: high Y_e, n-poor, 1st peak elements Red: low Y_e, n-rich, 2nd-3rd peak elements

A kilonova-based solution?

- If NSMs enrich metal-poor stars: r-process halo stars and kilonovae have same composition
- Gravitational waves guarantee a NS-NS
- Future KNe X_{La}
 distribution should
 match halo star
 composition

 X_{La} from GW170817 ~ 10-2±0.5 (Kilpatrick et al. 2017)

Outline

- Ultra-faint dwarf galaxies
- Neutron-capture nucleosynthesis
- UFDs with large amounts of r-process
- UFDs with low neutron-capture elements
- Connection to Milky Way's halo

Neutron-capture elements in most UFDs

What makes this stuff?

* Low but nonzero yield

* [Sr/Ba] varies ~2 dex

* Source of Sr and Ba can be different

* Does NOT dominate n-cap production

Alex Ji
Ji et al. 2018

Possible origins of neutron-capture elements in most UFDs

- Neutrino-driven wind in CCSNe

 e.g., Wanajo 2013
- "Failed" MRD jets
 e.g., Nishimura et al. 2015, Moesta et al. 2018

- * Low but nonzero yield
- * [Sr/Ba] varies ~2 dex
- * Source of Sr and Ba can be different
- * Does NOT dominate n-cap production
- Spinstars or proton ingestion in Pop III stars
 - e.g., Cescutti et al. 2013, Clark et al. 2018, Banerjee et al. 2018
- A yet-unknown low-yield r-process source

Roederer 2017

Casey & Schlaufman 2017

Halo stars with low n-cap prefer r-process

What about larger dSphs?

Categorize dwarf galaxies by neutron-capture behavior

Blue: high Sr, high Ba Orange: low Sr, high Ba Yellow: low Sr, low Ba

(Dark red: r-process)

Classical dSph references:
Aoki+09, Cohen+Huang 09/10, Frebel+10, Fulbright+04, Geisler+05,
Hansen+18, Jablonka+15, Kirby+Cohen 12, Norris+17,
Shetrone+01/03, Simon+15, Skuladottir+15, Tafelmeyer+10,
Tsujimoto+15/17, Ural+15, Venn+12

Alex Ji

Ji et al. 2018

Neutron-capture element evolution correlates with galaxy stellar and dynamical mass

Categorize dwarf galaxies by neutron-capture behavior

Blue: high Sr, high Ba Orange: low Sr, high Ba Yellow: low Sr, low Ba

(Dark red: r-process)

Luminosity

Stochastic sampling of rare sources?

Preferential n-cap loss from small DM halo?

Time delayed sources?

Outline

- Ultra-faint dwarf galaxies
- Neutron-capture nucleosynthesis
- UFDs with large amounts of r-process
- UFDs with low neutron-capture elements
- Connection to Milky Way's halo

~Half of r-process enhanced halo stars come from destroyed UFDs

Kaley Brauer MIT

Observed fraction

Modeled fraction

Assuming 10% of UFDs are r-process enhanced Looking at accreted halo with [Fe/H] < -2.5

"High"-Fe, low-n-cap: the best UFD chemical tag And they exist!

Summary

- Neutron-capture elements are the defining abundance feature of the faintest dwarf galaxies
- The r-process is dominated by a rare, prolific source: neutron star mergers most plausible
- The origin of neutron-capture elements in most UFDs remains unknown
- Neutron-capture elements encode something about galaxy mass
- Halo stars with extreme neutron-capture elements can be chemically tagged to the faintest building blocks of our MW halo

Extra Slides

Ret II has unusually low Th

Naive application of literature production ratios:

Age =
$$24.9 \pm 2.8 \pm 10.3 \pm 3.2$$
 Gyr (stat) (sys, obs) (sys, PR)

More likely explanation: variable initial production ratios

UFD Environment Mitigates Delay Time Problem for NSMs

Single supernova can delay star formation for 25 Myr Very inefficient star formation

Neutron star merger delay time

20% from 10-100Myr

Fast-merging neutron stars

Submodel A: requires binaries to survive "unstable BB" mass transfer

Carbon through Zinc similar to halo stars at [Fe/H] ~ -3

r-process not correlated with light elements

see Roederer et al. 2014, MNRAS, 445, 2970

Alex Ji

Zinc and MRD Jet SNe

Nishimura et al. 2017 predicts [Zn/Fe] > +1.5 for MRD Jet SN Zn chemical evolution in Ret II could constrain the r-process site if we know the dilution mass

Alex Ji

