Stellar Archaeology as a Time Machine to the First Stars

Ionization degree & magnetic diffusivities in the low-metallicity star-formation

Daisuke Nakauchi, Kazu Omukai (Tohoku Univ.) Hajime Susa (Konan Univ.)

Contents

- 1. Introduction
- 2. Ionization degree of low-metallicity gas
- 3. Magnetic diffusivities
- 4. Summary

1. Introduction

Magnetic field in star-formation

*B-fields change mass & angular momentum of a cloud by magnetic braking & driving outflow.

*B-fields control final mass & spin of a star, as well as formation rate of binaries.

*They work even if $B \ll B_{\rm ISM}$.

*B-field should be considered in low-Z star-formation.

Magnetic diffusivity & ionization degree

lonization degree of star-forming cloud can be very low. → B-field is dissipated by non-ideal MHD effects.

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u}_{n} \times \mathbf{B}) + \nabla \times [\eta_{ambi} ((\nabla \times \mathbf{B}) \times \mathbf{e}_{B}) \times \mathbf{e}_{B}]$$
ambipolar diffusion (plasma drift)

$$- \nabla \times (\eta_{\text{Ohm}} (\nabla \times \mathbf{\textit{B}})) - \nabla \times [\eta_{\text{Hall}} (\nabla \times \mathbf{\textit{B}}) \times \mathbf{\textit{e}}_{\textit{B}}]$$
Ohmic diffusion Hall effect

 $\eta_{\rm ambi}$ $\eta_{\rm ohm}$ $\eta_{\rm hall}$ depend on the ionization degree y(i).

MHD calculation requires accurate calculation of chemical reactions.

Problems in the chemical model

- Existing chemical models are unsatisfactory at high density where B-field will dissipate.
- At high density, y(i) takes equilibrium value, as a result of the balance between forward & reverse reactions:

$$R_1+R_2 \rightarrow P_1+P_2$$

- Any chemical model does not give correct equilibrium value without reverse reactions.
- We calculate y(i), considering all the reverse reactions.

2. Ionization degree of low-Z gas

Dynamics and Chemistry

★ One-zone model for a star-forming cloud.

· Dynamics:
$$\frac{d\rho}{dt} = \frac{\rho}{t_{\rm col}}$$

· Energy:
$$\frac{de}{dt} = -P\frac{d}{dt}\left(\frac{1}{\rho}\right) - \Lambda_{\text{net}}$$

$$H, H_2, e^-, H^+, H_2^+, H_3^+, H^-, He, He^+, He^{2+}, HeH^+, D, HD, D^+, HD^+, D^-, Li, LiH, Li^+, Li^-, LiH^+, Li^{2+}, Li^{3+}.$$

 For reverse reactions, rate coefficients are calculated from the detailed balance principle.

$$\begin{aligned} \mathbf{R}_{1} + \mathbf{R}_{2} & \longrightarrow \mathbf{P}_{1} + \mathbf{P}_{2} & k_{\text{rev}} = k_{\text{fwd}} K_{\text{eq}}(T) \\ K_{\text{eq}}(T) = \left(\frac{2\pi k_{\text{B}} T}{h_{\text{P}}^{2}}\right)^{3(M-N)/2} \left(\frac{m_{\text{R}_{1}} ... m_{\text{R}_{M}}}{m_{\text{P}_{1}} ... m_{\text{P}_{N}}}\right)^{3/2} \left(\frac{z(\mathbf{R}_{1}) ... z(\mathbf{R}_{M})}{z(\mathbf{P}_{1}) ... z(\mathbf{P}_{N})}\right) e^{-\Delta E/k_{\text{B}} T} \end{aligned}$$

Ionization degree of primordial gas

- Negative charge is carried by e, while positive charge is carried by H & Li.
- y(e) becomes
- > 100 times higher than before @ 10^{14} - 10^{18} cm⁻³.
 - The reason is that Li is ionized almost completely by thermal photons trapped in the cloud.

$$Li^+ + e \rightleftharpoons Li + \gamma$$

 Existing model does not consider this process and is not valid @ > 10¹⁴cm⁻³.

Chemical model in low-Z gas

- *T & y(i) are calculated using a chemical model which takes all the effects into account.
- · Gas-phase 570+570=1140 reactions among 63 species, including alkali metals, Li, Na, K, Mg.
- · Dust-related 154 reactions, including gr⁰, gr[±], gr^{2±}

y(i) of a low-Z gas: 10⁻² Z_{sun}

y(i) of a low-Z gas: 10⁻² Z_{sun}

Metallicity dependence of y(i)

3. Magnetic diffusivities

B-field dissipation from collapsing cloud

Magnetic Reynolds number:

$$Rm \equiv \frac{VL}{\eta_{ambi} + \eta_{Ohm}}$$

 $L \sim \lambda_{\rm J}$: characteristic length scale of B.

$$V \sim u_{\rm ff} \sim \lambda_{\rm J}/3t_{\rm col}$$
: fluid velocity

Rm = dissipation time / collapse time

B-field is dissipated from the collapsing cloud.

4. Summary

- *We calculate ionization degree of low-Z gas until high density.
- *We use a detailed chemical model which considers the reverse reactions, & chemistry of alkali metals & dust grains.
- *lonization degree becomes much higher than before @10¹⁴-10¹⁹ cm⁻³.
- *This is due to the ionization of alkali metals, Li, K, Na, which are missed in the existing models.
- *B-field dissipation is negligible in primordial gas.