

SYNTHETIC OBSERVATIONS OF THE HIGH-REDSHIFT UNIVERSE

KIRK BARROW

CO-AUTHORS: JOHN WISE, BRIAN O'SHEA, MICHAEL NORMAN, HAO XU, AYCIN AYKUTALP

DECEMBER 6, 2018

BARROW ET AL. 2017, BARROW ET AL. 2018A, BARROW ET AL. 2018B

DIRECT-COLLAPSE BLACK HOLES?

DIRECT-COLLAPSE BLACK HOLES

- z=7.085
- $M_{bh} = 2 \times 10^9 M_{\odot}$

Mortlock et al. 2011

DIRECT-COLLAPSE BLACK HOLES

- z=7.085
- $M_{bh} = 2 \times 10^9 M_{\odot}$

DIRECT-COLLAPSE BLACK HOLES

- z=7.085
- $M_{bh} = 2 \times 10^9 M_{\odot}$
- $L_{bh} = 6.3 \times 10^{13} L_{o}$
- 1.4 L_{Edd}

Mortlock et al. 2011

LITERATURE

Natarajan et al. 2017 Pacucci et al. 2016

Starburst Galaxy

Lyman-Werner Radiation

Collapsing Primordial Gas Direct collapse black hole forms

Accretion onto the black hole produces highenergy radiation

Ionizing Radiation triggers a starburst

Starburst Galaxy

Lyman-Werner Radiation

Collapsing Primordial Gas

forms

Accretion onto the black hole produces highenergy radiation

Ionizing Radiation triggers a starburst

Supernovae burst heats and metal enriches the CGM

Simulation: Aykutalp et al. 2019 (to be submitted)

CAIUS PIPELINE

Future Additions
Future Overhauls

Calculations

Inputs

CAIUS PIPELINE

Metal free and metalenriched hosting halos have distinct spectra and colors

Active Quiescent

Simulation: Aykutalp et al. 2017 (to be submitted)

Starburst Galaxy

Lyman-Werner Radiation

Collapsing

Primordial

Gas

forms

Direct collapse black hole

Accretion onto the black hole produces highenergy radiation

Ionizing Radiation triggers a starburst

Supernovae burst heats and metal enriches the CGM

DCBH embedded in an HII region

The halo was brightest in F200w

- The halo was brightest in F200w
- DCBH have distinct colors from both metal-free and metal-enriched galaxies after the initial starburst begins to die

Temperature [K]			
10 ³	10 ⁴	10 ⁵	10 ⁶

Results

- LW radiation at 1 kpc is greater than the intrinsic LW luminosity of the stars and DCBH after 6.6 Myr
- $J_{LW,max} > 1000 J_{21}$ at 200 pc
- HMXBs do not contribute

Starburst Galaxy

Lyman-Werner Radiation

Collapsing Primordial Gas

Accretion onto the black hole produces highenergy radiation

Lyman-Werner Radiation

Collapsing

Primordial

Gas

Ionizing Radiation triggers a starburst

Supernovae burst heats and metal enriches the CGM

embedded in an HII region

Starburst Galaxy

Lyman-Werner Radiation

Collapsing Primordial Gas

Direct collapse black hole forms

Accretion onto the black hole produces highenergy radiation

Lyman-Werner

Radiation

Collapsing Primordial

Gas

Ionizing Radiation triggers a starburst

Supernovae burst heats and metal enriches the CGM

- Less than six hours are needed to confirm this
 DCBH scenario using the three filters in the colorcolor diagram and a fourth filter to detect a Lyman Alpha break (z >6) about 20% of the time
- Chon 2016 suggests a sky density that corresponds to one detection in 14 pointings of six hours.

SUMMARY

 DCBH may materially contribute to extragalactic ionizing radiation and may trigger star formation in dense primordial gas

DCBH-hosting galaxies may contribute strong
 LW radiation through reprocessing

DCBH may be observable with JWST

