Stellar Archaeology as a Time Machine to the First Stars

LAMOST/Subaru project: Searching for metal-poor stars, moving groups and α -deficient stars

Haining LI (**享海宁**)

National Astronomical Observatories, Chinese Academy of Sciences

Collaborators: G. Zhao (NAOC, PI), W. Aoki (NAOJ, PI), T. Matsuno (NAOJ), T. Suda (U-Tokyo), S. Honda (NHAO), J.R. Shi (NAOC), Y.B. Kumar (NAOC), M. Ishigaki (IPMU), J.K. Zhao (NAOC), Q.F. Xing (NAOC), N. Tominaga (Konan-U)

Tracing early nucleosynthesis and chemical evolution through very metal-poor stars

- Statistics: chemical evolution models
- Peculiar chemical compositions: nucleosynthesis of single (or a few) process
- Limited sample + mixed sources

yields of a supernova of a very massive (>100 M_{\odot}) star (?)

Relics of ancient accretion events: halo moving groups (MGs)

• Limited number of identified MGs + unclear origins

Linking dSphs to MW's Halo with α-deficient stars

Were dSphs the true building blocks of the Galactic halo?

• MW outer halo: formed through a dissipationless chaotic merging of smaller subsystems (Carollo et al. 2007)

• Limited sample + no systematic search

LAMOST (郭守敬望远镜)

- LAMOST (The Large Sky Area Multi-Object Fibre Spectroscopic Telescope)
 - > Commissioning: 2009.9 2011.5
 - > Pilot survey: 2011.10 2012.5
 - Regular survey (Phase I): 2012.9 2017.6
 - ▶ Phase II: 2018.10 -
- Combination of large aperture (4m) and wide field (5deg)
- High spectra-obtaining efficiency: 3,400 targets at on exposure

LAMOST @ Xinglong, China

- ~4m
- 4,000 fibers
- r ~17.8
- 370nm 900nm

24 sub-mirrors of MA (4.9m)

MB 37 sub-mirrors ~ 6.1m IV T

LAMOST data releases

Large survey area (North 7700 deg² + South 3500 deg²)

> 1.5 million spectra / year

	Ending date	No. of spectra	No. of stellar spectra	Spectra of SNR > 10	No. of spectra with parameters	Release/Public date
DR0	20120617	958,944	812,911	619,151	396,249	2012.08/2012.08
DR1	20130603	2,660,613	2,342,849	1,925,735	1,127,872	2013.09/2015.03
DR2	20140603	4,309,098	3,843,851	3,293,600	2,174,812	2014.12/2016.07
DR3	20150602	5,968,162	5,354,883	4,665,075	3,185,475	2015.12/2017.07
DR4	20160602	7,681,185	7,682,298	6,076,210	4,202,127	2016.12/2018.07
DR5	20170608	9,017,844	8,171,443	7,531,398	5,344,058	2017.12/2019.07

LAMOST provides an unprecedented opportunity to search for more peculiar stars in the Milky Way in large area.

LAMOST-Subaru collaboration

High-resolution spectra are also demanded to understand the nature/origins of these stars

LAMOST-Subaru collaboration

High-resolution spectra are also demanded to understand the nature/origin of these stars

• LAMOST+Subaru joint project since 2014

- Joint proposal for Subaru open-use program
 - Intensive + normal + service programs
- CAS-JSPS joint project (2016.04-2018.12)
- Follow-up with Subaru/HDS runs
 - > About 500 objects (incl. VMP, MGs, low-α stars)
- More than 10 refereed papers published already

- Over 10,000 very metal-poor (VMP, [Fe/H] < -2.0) stars selected from LAMOST-DR3
 - Quite robust estimation of metallicity based on low-resolution spectroscopy reaching [Fe/H] ~ -4.0
 - > Typical uncertainty ~0.30dex for SNR~40, 0.15dex for SNR~80

Li et al. (2018a)

- Valuable resource for high-resolution follow-up
 - > The largest bright VMP star sample (e.g., $\sim 8,000$ objects with V < 16.5)
 - specially for the northern hemisphere

- Dominant by the halo population(s)
- Notable fraction of the retrograde component
 - > Further investigation of the nature of the halo components

- Reservoir for carbon-enhanced metal-poor (CEMP) stars
 - > Over 630 candidate CEMP stars identified using combined line indices
 - > v2.0 with carbon abundances estimated

VMP stars: follow-up with Subaru

About 450 VMP candidates from LAMOST were follow-up observed with Subaru/HDS (in "snapshot" mode)

- Over 400 were
- Covering wide evolutionary stages
- $\sim 100 \text{ EMP stars}$
- 3 UMP stars
- Searching efficiency > 90% for VMP stars

VMP stars: follow-up with Subaru

Relatively bright + reliable kinematics (e.g., plx/err_plx>5.0 for ~80% of the sample)

VMP stars: abundance trend

• Largest uniform very metal-poor sample to date

Teff > 5500K vs Teff < 5500K; CEMP (filled) vs C-normal (open)

VMP stars: Li-rich VMP stars

Subaru follow-ups confirm 12 Li-rich very metal-poor star

VMP stars: Li-rich VMP stars

- No correlation with abundances of other elements
- No signature of high binary frequency
- No clear excess of line broadening due to rapid rotation

VMP stars: Li-rich VMP stars

First systematic search

Li-rich giants (before RGB bump) can be explained by dilution by 1st dredge-up

First discovery of super Li-rich subgiants in the field, raising challenges to low-mass stellar evolution model

- Very similar pattern from O to Zn (including similar (C+N)/O): similar progenitor in the early universe
- Discrepancy of heavy elements: no connection between their origin and the excess of lighter elements

VMP stars: J2217

Aoki et al. (2018)

- The abundance pattern from C + N to Ca is well reproduced by the model of 25Msun
 - > Typical mass for normal EMP stars
 - Different abundance pattern would be some property of progenitors other than their mass

VMP stars: r-II stars

- Two new bright r-II stars (Vmag~11.2/12.4)
 - > important to understand the site for the universal r-process
 - > UV spectra obtained

Li et al. (2015); Honda et al. in preparation

Halo MGs: LAMOST detection

Ten new halo MGs in phase space were detected with LAMOST. The number increased by 50% (14->24).

J.K. Zhao

Halo MGs: origin of LAMOST-N1

([Mg/Fe]+[Ca/Fe])/2.0

Halo MGs: origin of LAMOST-N1

N1 most likely originate from systems with a slower chemical evolution

A possible identification of relic of such systems in the phase space The possibility to disintegrate the "low- α " class into individual groups

α -deficient stars

- Detection of over 100 candidates
- Nine (out of 11) confirmed by Subaru/HDS follow-up observations

'ornax Sculptor

LAMOST-II

- Updated spectrographs
 - > Gratings are updated and able to switch to $R \sim 7500$
 - > Blue arm: 496-533 nm (Mg Triplet, metallic lines) ;
 - > Red arm: 630-680 nm (Hα, Li)

LAMOST-II

- 5-year survey: Oct 2018-Jun 2023
 - Dark/gray nights (14 nights/month): LRS survey
 - Bright/gray nights (13 nights/month): MRS survey
- Scientific goals
 - Galactic archaeology
 - Star formation
 - Stellar physics (time domain)
 - > Stellar clusters, etc.

LAMOST-II

- Expected numbers of spectra
 - LRS: ~3 million more spectra with 1.5h exposure (stars + galaxies+ QSOs), r<18
 - MRS: ~200 K stars with time-domain spectra (20min x n_epoch, <n_epoch>~60), G<14</p>
 - > MRS: ~2 million stellar spectra (20min x 3),G<15

Summary

- Large sample of peculiar stars detected in LAMOST
 - > Over 10,000 very metal-poor stars
 - > Ten new halo moving groups in the solar neighborhood
 - > Over 100 α -deficient halo stars
- Detailed investigations with Subaru
 - Uniform abundance analysis of over 400 VMP stars: ultra metal-poor (UMP) stars, r-II stars, Li-rich VMP stars, etc.
 - > Origin of MGs: LAMOST-N1 as remnants of a massive dwarf galaxy
 - Nine α-deficient stars confirmed
- LAMOST-II + Subaru: stay tune

Thanks !

lhn@nao.cas.cn