Partition of the test of test

observations of Chemo-dynamical evolution of dwarf galaxies and future large spectroscopic surveys

Eline Tolstoy, Kapteyn Astronomical Institute, University of Groningen

Coherent sub-structure in (outer) halo

Gaia DR2 All Sky pictures

Image credit: Khyati Malhan, Rodrigo A. Ibata, Nicolas F. Martin Malhan, Ibata & Martin 2018, in press

HI gas around the Magellanic Clouds

20

A MB

Image Credit: V. Belokurov, D. Erkal (Cambridge, UK). HI map: M. Putman (Columbia, US)

Gatto et al. 2013 MNRAS, 433, 2749

 $n_{\rm cor} \sim 3 \times 10^{-4} \,{\rm cm}^{-3}$

Belokurov et al. 2017 MNRAS, 466, 4711

0

_20

10

-10 XMB

rellinger (CMich, US)

YMS

20

a10

Morphology-Density Relation

from Filippo Fraternali

Metallicity-luminosity relationship for dwarf galaxies in the Local Group.

Segue 1 $M_v \sim -1.5$

23kpc

Pre-Gaía Coherent Structures in the outer halo

black points: Majewski et al. 2003 M-giant survey

from Berenice Pila Diez

Coherent Structures around the MCs

using BHBs

Belokurov & Koposov 2016 MNRAS, 456, 602

Let's get into details of...

Classical dwarf spheroidals

Sculptor: a textbook dwarf spheroidal galaxy

Image: Thomas de Boer NOAO/CTIO4m/MOSAIC

FLAMES DART project

low resolution (R~4-6k)

medium resolution (R~15-25k)

high resolution (R~30-50k)

Low Resolution Spectroscopy

$[Fe/H] \propto EW$ of Call triplet lines

 $[Fe/H] = -2.87 + 0.195 \times (V - V_{HB}) + 0.458 \times EW_{(2+3)}$ $- 0.913 \times EW_{(2+3)}^{-1.5} + 0.0155 \times EW_{(2+3)} \times (V - V_{HB})$

Also surveys by Walker et al. and Kirby et al. in different wavelength regions from different telescopes/instruments.

Starkenburg et al. 2010 A&A Battaglia et al. 2008 MNRAS

Mass profiles: Sculptor

Strigari et al. (2007, 2009) black dots; Walker et al. (2009) blue dot; Amorisco & Evans (2011) triangle.

Proper Motions: GAIA, HST

motion on plane of sky after 12 years

Sculptor dSph

Massari et al. (2018) Nat. Astron.

Intermediate Resolution Spectroscopy

Fe Mg, Si, Ti, Ca Ni, Cr, Y, Ba, La, Nd, Eu

alpha-elements

Hill, Skúladóttir et al. 2018 A&A, in press arXiv:1812.01486

Alpha elements: nearby galaxies

DART FLAMES results on Sextans dSph

Aoki et al. 2009

Theler, Jablonka, Primas et al. in prep

High Resolution Spectroscopy

Fe, Mg, Si, Ti, Ca, Ni, Cr, Y, Ba, La, Nd, Eu + O, Na, Sc, Nd, Fell, Till

Overview of alpha in different systems

Cohen et al. 2013, 2006, 2004; Spite et al. 2006; Aoki et al. 2007; Lai et al. 2008; Yong et al. 2013; Ishigaki et al. 2013

from Pascale Jablonka

Extremely precise Overview of alpha in different systems

R>25 000 spectra

Mashonkina et al. 2017a,b

Heavy Elements: Strontium & Barium

Mashonkina et al. 2017b

Strontium & Barium & Magnesium

to remove any potential pollution of Fe by the ejecta of SNIa

Heavy Elements: Europium

Mashonkina et al. 2017

s-process Elements

Scl

Sculptor Carina Sagittarius

VLT/FLAMES/UVES

Zinc is an important element for tying down supernovae masses and energies

Skúladóttir et al. 2017 A&A, 606, A71

Carbon in Sculptor

Starkenburg et al. 2013 A&A, 549, A88 Tafelmeyer et al. 2010 A&A, 524, A58

Skúladóttir et al. 2015, A&A, 574, A129

Carbon Rich Stars in classical dSph?

Scl CEMP stars

Sculptor dSph

Chiti et al. 2018 ApJ

Scl CEMP stars

Chiti et al. 2018

Kirby et al. + Simon et al.; Jablonka et al.

<u>Measuring</u> the Timescale for Chemical Evolution in Sculptor

de Boer et al. 2012, A&A, 539, A103

Other elements with ages

Hill, Skúladóttir et al. 2018 A&A, in press arXiv:1812.01486

Going back to Milky Way halo...

A dwarf galaxy in the Milky Way halo?

VLT/UVES: 4800–6800Å; R \simeq 55 000; S/N \sim 250–500. NOT/FIES: 4700–6400Å; R \simeq 40 000; S /N \sim 140–200.

Nissen & Schuster 2010 A&A

Halo stars near the Sun with Gaia DR2

within 2.5kpc radius of Sun <u>6 366 744 stars</u>. 6D sample

Koppelman, Helmi & Veljanoski (2018)

Colour-Magnitude Diagram

stars younger than thick disk

Gaia Collaboration (2018): Babusiaux, et al

Abundances from APOGEE

lower [alpha/Fe] at same [Fe/H] than thick disk stars formed elsewhere with lower SFR smaller potential well: M_{*} ~ 6 x 10⁸ M_{sun}

Gaia-Enceladus

Debris across tens of thousands of sq degrees (no overlap with SDSS structures) Ten globular clusters (with retrograde orbits) can be associated follow a tight age-metallicity relation

Helmi et al (2018), Nature

Back to the future...

Importance of large spectroscopic surveys

Requirements on surveys come from how well we need to know elemental abundances and stellar parameters.

The WEAVE facility @ WHT

Telescope, diameter	WHT, 4.2m	NA NA
Field of view	2° Ø	
Number of fibers	960 (plate A)/940 (plate B)	
Fiber size	1.3″	
Number of small IFUs, size	20 x 11"x12" (1.3" spaxels)	
LIFU size	1.3'x1.5' (2.6" spaxels)	
Low-resolution mode resolution	5750 (3000–7500)	
Low-resolution mode wavelength coverage (Å)	3660–9590	FIBRE POSITIONER
High-resolution mode resolution	21000 (13000–25000)	
High-resolution mode wavelength coverage (Å)	4040–4650, 4730–5450 5950–6850	
<complex-block><complex-block><complex-block><complex-block><complex-block><complex-block><complex-block><complex-block><complex-block></complex-block></complex-block></complex-block></complex-block></complex-block></complex-block></complex-block></complex-block></complex-block>	SPECTROGRAPH ROOM	
 First light Q4 2019 		

• Survey start QI-Q2 2020, for 5 yrs at 70% of WHT time om Vanessa Hill (adapted)

WEAVE-GA surveys at glance

WEAVE ~4 million stars to unravel the MW history !

slide from Vanessa Hill

HR baseline survey

○ >10⁶ stars in Gaia's age sphere

Magnitude 2 <m<sub>G<4</m<sub>	σ _π /π 4	Distance	%	Nb of stars
G < 16	9%	2 kpc	28%	500,000
G < 14	1%	0.8 kpc	11%	200,000

 >2.10⁵ stars reaching out through the thick disc (giants)
 Incl. >5.10⁴ halo giants

slide from Vanessa Hill

High latitude LR survey: baseline survey

Wide-area survey:

8500 deg², Down to r = 20-21

- Tracers: MSTO and giants + BHB and EMP stars (from Pristine + JPLUS) Halo:
- ~220,000 halo giants out to ~100kpc
- ~350,000 halo MSTO to ~30kpc ~40,000 BHB and EMP stars Thick disc: ~6x10⁵ stars (MSTO)

Pointed survey:

250 deg² with 4h/pointing
7 known streams and
6 dwarf galaxies
Down to r = 21

slide from Vanessa Hill

MOST

4MOST – 4m Multi-Object Spectroscopic Telescope

1.2

ASTRON

1.4

rijksuniversiteit groningen 1.6

Wide-field highly multiplexed spectros

- 2.5 deg diameter FOV and 2400 fibers
- 2 LR and HR spectrographs
- High throughput/ high survey efficiency
- Start of operations in November 2022

Galactic Surveys: Low Res MW halo (Helmi / ^J High Res MW halo (Christ Low Res MW disk and bul High Res MW disk and bul Magellanic Clouds (M.R. (Current LR halo footprint: every RGB star with G < 20 will be observed

Radial Vel err ~ 1 - 2 km/s
Fe/H and alpha/Fe ~ 0.1 - 0.2 dex

1.8

log₁₀[N/deg]

2.0

2.2

University of Portsmouth

Southampton

2,4

2.6

NGC 5907 credit: R. Jay Gabany

.

fin