The slow neutron capture process

Amanda Karakas

School of Physics & Astronomy, Monash University, Australia and Kavli IPMU, University of Tokyo, Japan

Maria Lugaro and Chiaki Kobayashi

The Helix Nebula – NGC 7293

Origin of heavy elements

- Most heavy nuclei are formed by neutron addition onto Fe-peak elements
- Two processes:
 - *r*-process (rapid neutron capture)
 - s-process (slow neutron capture)

References:

 Meyer (1994), Gallino et al. (1998), Busso et al. (2001), Sneden et al. (2008), Käppeler et al. (2011)

Making heavy elements

Neutron number

Proton number

SITES OF HEAVY ELEMENT NUCLEOSYNTHESIS

Sites of heavy element nucleosynthesis

Neutron star mergers

Massive stars

Magneto-hydrodynamically driven supernovae \rightarrow unusual supernovae

Asymptotic giant branch stars

Credit: ALMA/Kershbaum

The r-process ~50%

The s-process ~50%

The s-process: massive stars

 Rotation can significantly affect s-process production inside massive stars, e.g., from Choplin et al. (2018) for models with metallicity = 10⁻³

See also Limongi & Chieffi (2018), Frischknecht et al. (2016), Pignatari et al. (2008)

Asymptotic Giant Branch Stars

Asymptotic Giant Branch stars: (upper mass limit ~6-8Msun)

- After core He-burning, the C-O core contracts and the star becomes a giant again
- Double-shell configuration
- He-burning shell is thermally unstable and flashes every ~10⁴ years
- Rapid, episodic mass loss erodes the envelope

Review by Karakas & Lattanzio (2014)

Interpulse phase (t ~ 10⁴ years)

t i m e

Nucleosynthesis in AGB stars

- Low-mass: ~0.9 to $3M_{sun}$ for [Fe/H] $\leq -1 \rightarrow$ Ba, CEMP
 - Third dredge-up: helium shell mixed into the envelope (e.g., ¹²C, s-elements)
- Intermediate-mass: M ≥ 3 M_{sun} for [Fe/H] ≤ -1 → N-rich
 - − H-burning (e.g., ¹⁴N) plus third dredge-up \rightarrow primary C and N

Models of [Fe/H] = -0.7 from Karakas et al. (2018)

THE S-PROCESS IN AGB STARS

The s-process depends upon

- 1. Mass
- 2. Metallicity
- 3. Rotational velocity

The s-process: The effect of mass

• Models of [Fe/H] = −2.3 from Lugaro, Karakas, et al. (2012):

The s-process: The effect of mass

• Models of [Fe/H] = −2.3 from Lugaro, Karakas, et al. (2012):

Neutron production: ¹³C source

Mixing a few protons into the top of the He-shell produces a ¹³C pocket \rightarrow ¹³C burns *radiatively*

Neutron production: ²²Ne source

Extra burst of neutrons from the ²²Ne(α ,n)²⁵Mg reaction, which takes place during thermal pulses

Theoretical models

Typical neutron density profile in time:

Neutron source

Maximum neutron density

Timescale

Neutron exposure

Low mass	Intermediate mass
¹³ C(α,n) ¹⁶ O	²² Ne(α,n) ²⁵ Mg
10 ⁸ n/cm ³	~10 ¹⁴ n/cm ³
~10,000 yr	days – 10 yr
0.3 mbarn ⁻¹	0.02 mbarn ⁻¹

(at solar metallicity)

Theoretical models

Typical neutron density profile in time:

Neutron source

Maximum neutron density

Timescale

Neutron exposure

Low mass	Intermediate mass	
¹³ C(α,n) ¹⁶ O	²² Ne(α,n) ²⁵ Mg	
10 ⁸ n/cm ³	~10 ¹⁴ n/cm ³	
~10,000 yr	days – 10 yr	
1-2 mbarn ⁻¹	~0.2 mbarn ⁻¹	
(at low matalliaitica)		

(at low metallicities)

1. All ¹³C nuclei are converted into neutrons and the main neutron absorber is ⁵⁶Fe:

Neutron density \approx ¹³C / ⁵⁶Fe

2. ¹³C in the pocket is produced by proton captures on primary ¹²C, from triple-a in the He shell: ¹³C is a primary neutron source!

Clayton (1988)

3. The neutron density scales with the inverse of ⁵⁶Fe, i.e., with the metallicity.

This means that lower metallicity stars produce more neutrons and more heavier elements. [Ba/Sr] (or [Ce/Y]) should increase with decreasing metallicity

From theoretical models

From observations of Barium stars

Cseh et al. (2018) compared the data with model predictions:

The effect of stellar rotation?

Cseh et al. (2018) compared the data with model predictions:

It suppresses the neutron flux (Herwig et al. 2003, Siess et al. 2004, Piersanti et al. 2013)

AGB chemical yields

Yield = amount of an isotope ejected into the ISM over the star's lifetime

Black dots = weighted by an IMF

AGB yields with s-process elements

- Our group: Fishlock et al. (2014), Karakas & Lugaro (2016), Karakas et al. (2018); yields of 1 to ~8Msun (-2.3 ≤ [Fe/H] ≤ +0.3)
- FRUITY database: Cristallo et al. (2015); includes a few models with rotation (-2.15 ≤ [Fe/H] ≤ +0.15)
- NuGrid/MESA: Pignatari et al. (2016), Ritter et al. (2018); for Z = 0.001, 0.006, 0.01 and 0.02

What is lacking? Yields for low metallicity for all masses. Super-AGB yields (Q: are they even needed?)

Very low-metallicities

Model mass ranges studied:

- M = 4 to 9Msun
- Metallicities: [Fe/H] = -3.2

What is lacking?

- No s-process
- No non-standard stellar physics (e.g., rotation)

From Gil-Pons et al. (2013) – tabulated yields

See also studies by Siess et al. (2002), Iwamoto et al. (2004), Iwamoto (2009), Campbell & Lattanzio (2008), Suda & Fujimoto (2010), Cruz et al. (2013)

PUZZLES

Challenges and puzzles

- 1. The Sr, Y, Zr abundances in metal-poor stars \rightarrow points to another source of heavy elements (light *r*-process?)
- The CEMP r/s stars → CEMP i? Site? (e.g., Hampel et al. 2016, Denissenkov et al. 2018)
- 3. Origin of neutron-capture elements in post-AGB stars. Also i-process?
- 4. Did pre-solar SiC grains originate in a *metal-rich* AGB population?

Puzzles: CEMP r/s stars

- About 50% of CEMP stars with an s-process signature also show an enrichment in rprocess elements
- \rightarrow Is this the i-process? E.g.,
- \rightarrow Dardelet et al. (2015),
- \rightarrow Hampel et al. (2016)

Using the data and classification of Masseron et al. (2010)

Definition of CEMP s/r:

- [Eu/Fe] > 1
- [Ba/Eu] > 0 but lower than for CEMP-s
- Appear distinct from CEMP-s (e.g., Lugaro et al. 2012; Cohen et al. 2005)

Puzzles: metal-poor post-AGB stars

- In the Small and Large Magellanic Cloud, a population of very s-process enriched post-AGB stars have been discovered
- The stars only have upper limits for Pb

Metal-poor post-AGB stars

Where are they on the Ba/La-Eu diagram?

Modelling heavy elements in AGB stars

We have made considerable progress in spite of severe modelling uncertainties (e.g., mass loss, convection...)

See Tripella et al. (2016), Buntain et al. (2017), Piersanti et al. (2013) t i m e

The intermediate-neutron capture process

- Observations have presented us with abundances that are not easily explained with s-process models
- Could they be better fit by an "intermediate" process?
- → Burst of neutron production above what we find in sprocess models
- → The intermediate or "i-process" (Cowan & Rose 1977)

The i-process in post-AGB stars

- Neutron densities on the order of ~10¹¹ n/cm³ operating not in equilibrium can produce a pattern that matches
- Plot by Melanie Hampel (PhD student, Monash Uni)

CEMP-r/s should be CEMP-i

- Best-fitting model for CEMP-*s*/*r* star LP625-44
- Hampel et al. (2018, in prep) now including Pb

What are the site(s) of the *i*-process?

- Low-mass, low-metallicity post-AGB stars (Lugaro et al. 2015)?
- Low-metallicity intermediate-mass AGB stars (Jones et al. 2016)?
- Rapidly accreting white dwarfs (e.g., Hillebrandt et al. 1986, Denissenkov et al. 2017, 2018)
 - There are issues with the Denissenkov et al. models but the idea as a site for GCE is interesting

Chemical evolution with heavy elements

Chemical evolution with heavy elements

Kobayashi, Karakas & Lugaro (2018, in prep) – see her talk on Friday!

Summary

- With available s-process yields, we can now make quantitative chemical evolution predictions including heavy elements
- The new yields are timely, given the release of stellar abundance data from surveys for 100,000+ stars (e.g., GAIA-ESO survey; Galah in Australia, Buder et al. 2018; K2 mission, e.g. Huber et al. 2016)
- We are still missing predictions for the lowest metallicities
- Puzzles related to post-AGB and CEMP r/s may be related to the i-process