Simulating the formation of the first stars

Shingo Hirano

Kyushu Univ. (JSPS Research Fellow)

Stellar Archaeology as a Time Machine to the First Stars @ Kavli IPMU (Dec 3-7, 2018)

Vital player in the early universe

First Stars (1st-generation, Population III stars) formed from the primordial gas (H, He, light atoms)

Massive First Stars : Why?

"1st-generation" (Population III) stars formed from the **primordial, metal-free gas.** (Big Bang nucleosynthesis species; 76% H, 24% He, 10⁻⁵% D, little Li)

Reason-1: Rapid mass growth

Reason-2: Limited feedback process

In the metal-free cloud with the tiny B-field,

- ★ Radiation pressure
- \mathbf{X} MHD disk wind
- **O**UV photo-evapolation

(McKee & Tan 2008)

With $\dot{M} \ge 4 \times 10^{-3} [M_{\odot}/yr]$,

the expanded protostar cannot emit UV photons from the low-T surface $(T_{eff} \propto R^{-2})$. \rightarrow UV feedback is inefficient! (Omukai&Palla 2003)

MHD disk wind radiation pressure photoevaporation disk accretion main accretion phase

Schematic view from Tanaka+'18

Simulation

Ab initio cosmological simulation

Physical properties of the primordial star-forming cloud can be reproduced theoretically & numerically by performing the cosmological simulation

Simulation of the first star formation

Cosmological hydro simulation by Gadget-3 (Springel'05) N-body (DM) + SPH (Gas) +Primordial chemistry +Hierarchical zoom-in

+ Particle splitting $(L_{Jeans}/L_{sph} > 15)$

Simulation by SH Visualization by Takaaki Takeda (VASA)

Initial mass of first star at the ZAMS

RHD simulation

Self-gravity, hydrodynamic, primordial chemistry, radiation transfer

Equation system of the protostar

UV stellar radiative feedback finally ceases the mass accretion onto the protostar. (Hosokawa+'11; Stacy+'12; Susa+'13)

We haven't finished our "Homework" yet.¹⁰

Pop III IMF

Question-1: Low-mass end of IMF

Small-scale fragmentation of the accretion disk

- [1] Merger
- \rightarrow episodic accretion burst
- [2] Survival
- \rightarrow binary/multiple
- [3] Escape from the disk
- \rightarrow surviving first stars

Depending on the Calculation method: \triangle Sink particle technique

Resolution \Leftrightarrow Calculation time

Restriction of the simulation scale by

- Sink particle technique \rightarrow underestimates the scale
- Adiabatic core treatment \rightarrow overestimates the scale

Question-2: High-mass end of IMF

Higher-accretion rate than the critical value of the stellar feedback:

$$\dot{M} \cong \frac{M_{\text{Ieans}}}{t_{\text{freefall}}} \propto T_{\text{Jeans}}^{\frac{3}{2}} \propto cs^3 \ge \dot{M}_{crit} = 4 \times 10^{-3}$$

Radiative origin

Processes for inefficient H_2 -cooling (a) Photo-dissociation $H_2 + \gamma \rightarrow 2H$ (b) Collisional-dissociation $H_2 + H \rightarrow 3H$

Kinetic origin

Supersonic coherent flow between DM and gas fluids left over the Big Bang suppresses the abundance of the first objects (Tseliakhovich & Hirata 2010)

➔ Massive halo, dense cloud

Supermassive / Massive binary

5 kpc

Fragmentation of massive filament

Question-3: Spin

Evolution and death of first stars depends on

- 1. Stellar mass (e.g. Heger & Woosley'02; Heger+'03)
- 2. Stellar rotation (e.g. Chiappini+'11; Chatzopoulos&Wheeler'12)

Problem: Magnetic effect

Q. B-field amplification by the small-scale dynamo in the turbulent cloud

On-going: Magnetic effect

Analytic evaluation

Numerical simulation

• 3D non-ideal MHD (but for present-day case now)

"Simulating the formation of the first stars"

- 1. DM Structure formation (~2000; e.g. Abel et al. 1997)
- 2. Collapse phase (~2010; e.g. Yoshida et al. 2008)
- 3. Accretion phase (~2020; who?)
- 4. Pop III IMF (~2030; **who?**)
 - ✓ We found important physical mechanisms, but there are still unresolved problems: fragmentation, magnetic effect.
 - ✓ Dependence on the formation environment.

M _{PopIII} [M _☉]					
0.1	1	10	100	1000	105
Surviving		Chemical	PISN		Seed of
stars		ancestors	Massive BH close binary (GW source)		SMBH (high-z quasars)