Accelerating Universe in the Dark March 4 - 8, 2019 Yukawa Institute for Theoretical Physics, Kyoto University

Galaxy surveys using Large Submillimeter Telescope

河野孝太郎

Kotaro Kohno (University of Tokyo) on behalf of the LST WG

Outline

- Frontiers of high-redshift galaxy study
 - exploring the earliest epoch of star and metal formations via [OIII] 88µm line and dust
- Overview of Large Submillimeter Telescope (LST) concept
- Galaxy surveys using LST
- Can we exploit LST galaxy surveys for cosmology ??
 - Redshift space distortion (RSD)
 - Intensity mapping (IM)
- Summary

Exploring the earliest epoch of star and metal formations in galaxies

Declination (J2000)

Redshift frontiers of spectroscopically detected galaxies

#	Redshift	Object	References	Telescope/Line
1	9.110	MACS J1149-JD	Hashimoto+ (2018)*	ALMA/[OIII]
2	8.683	EGSY-2008532660	Zitrin+ (2015)*	Keck/Ly a
3	8.38	A2744_YD4	Laporte+ (2017)	ALMA/[OIII]
4	8.312	MACS0416_Y1	Tamura+ (2018)	ALMA/[OIII]
5	7.664	z7_GSD_3811	Song+ (2016)	Keck/Ly a
6	7.640	MACS1423-z7p64	Hoag+ (2017)	HST/Lyα & ALMA/[CII]
7	7.541	ULAS J1342+0928	Banados+(2017)	Magellan/Ly α
8	7.508	z8-GND-5296	Finkelstein+ (2013)*	Keck/Ly a
9	7.452	GS2_1406	Larson+ (2017)	HST/Lyα
10	7.212	SXDF-NB1006-2	Shibuya+(2012) Inoue+ (2016)*	Subaru+Keck/Lya ALMA/[OIII]

Earliest star and metal formations during the Epoch of Reionization (EoR) to "pre-EoR"

- An issue: how to find good target for ALMA observations → HST (currently)
- statistically large sample? candidates for the first forming galaxies @z=15?
 HST no longer works; JWST and ALMA sensitivities are good but not optimized for survey

Required survey area and depth predicted $\rightarrow > 1 \text{ deg}^2 \cdot \text{peak flux } \sim 1 \text{ mJy}$

Large Submm Telescope

- Large aperture (D = 50 m)
- Wide field of view (> 0.5 deg)
- Long-submm/mm frequency band
- Survey-oriented

 $1 \mu m$

Microwave Coupler

On-chip superconducting spectrograph DESHIMA does exist

Galaxy surveys using LST

Search for z = 8 – 15 galaxies using the LST ***** ultra-deep 2-deg² imaging-spectroscopy survey

- An unbiased imaging-spectroscopy survey using LST 50m + multi-pixel (100 pix), medium-resolution (R=1000), ultrawideband (70 – 370 GHz) imaging spectrograph
- Statistically large sample @z = 8 10, significant number of candidates @z = 12 15
 - $2 \deg^2$, $t_{obs} = 9,000 hrs$
 - more sample → clustering analysis @z>10 → first measurements of dark halo mass, evolution of [OIII] luminosity functions up to z>10

Exploring the earliest epoch of star and metal formations in galaxies

Declination (J2000)

Millimeter/submillimeter imaging surveys

ALMA deep surveys at $\lambda = 1.1-1.3$ mm

Necessity of >50m-class dishes: to fully resolve the cosmic infrared background

- 850µm band continuum imaging surveys using a 50-m telescope
- majority (>90%) of the cosmic infrared background light (CIB) can be resolved into discrete sources

Adopted number counts: Bethermin et al. ApJ, 757, L23 (2012) Definition of confusion: 12 beams per source

A huge leap in continuum sensitivity

mapping speed: survey area observed within a given depth and observing time

Figure: Wayne Holland

Galactic Plane

R CrA IRS7B

2 major key science goals:

(1) Formation and evolution of galaxies in the cosmic history from the present-day to the epoch of reionization (EoR) (2) Variety and universality of the early epoch of star formation

www.lstobservatory.org

Distant Galaxies and Clusters

e-Field multi-color Imaging

Time-domain Science

Submm Transients

Planetary atmospheres

VLBI high cadence submm VLBI

Magellanic Clouds

Wide-Field Spectroscopic Imag

Astrochemistry • Spectral-line mapping survey

3.40

Nearby Galaxies

Can the LST galaxy surveys also be useful for cosmology??

Redshift Space Distortion via CO and [CII]

σ₈: The rms amplitude of density fluctuation with a comoving radius of 8/h Mpc

- A LST 100 deg² survey using super-DESHIMA (1,000 spatial pixel) can put constraints on RSD at z = 2 - 3 using CO \Leftrightarrow HETDEX (Ly α -based) and z = 4.4 - 8 using [CII] 158 μ m \Leftrightarrow SPHEREX (Ly α -based) ^{S. Saito-san's talk}
- Can we say that these LST constraints are useful as "multi-tracer" to mitigate cosmic variance (e.g., Seljak+09) ??

[OIII] 88µm + [CII] 158µm Intensity Mapping

- [OIII] 88µm intensity mapping: a new probe of LSS beyond z>8
 - beyond the redshift range of SPHEREx (z = 5.2 8, Ly α)
 - cross-correlation with [CII] 158µm → eliminating foreground contaminations
- "sweet spot" redshift ranges
 - z = 8.4 9.0
 - z = 12 15
- → "Narrow band filter" like instruments for some specific redshift ranges can be another promising way to go?

example: [CII] 158µm Intensity Mapping using CCAT-p

Summary

- Redshift frontiers of galaxy study via [OIII] 88 μ m lines and submm continuum to explore the earliest formation of metal and dust in galaxies: now [OIII] 88 μ m line + ALMA starts to outperform Ly α + optical/near-infrared telescopes
 - O^{++} and dsut @z = 9.110 \rightarrow star formation @z ~ 12 15
- How to uncover candidate z~12-15 star-forming galaxies? [OIII] 88 µm with ALMA, CIII] 1909 A with JWST can be feasible but FoVs are too small
- Large Submillimeter Telescope (LST), D=50m survey optimized, equipped with medium-resolution (R=500-1000) imaging spectrograph (super-DESHIMA/MOSAIC), covering 70 – 370 GHz with 100 spatial pixels, can be unique for this purpose!
- galaxy survey 1: a 2-deg² drilling survey (9,000 hrs) \rightarrow a statistically large [OIII] emitters at z = 8 10, and a significant number of [OIII] candidates at z = 12 15
- galaxy survey 2: a 100-deg² wide survey (5,000 hrs) having 1,000 spatial pixels
 → ~10⁶ CO emitters and ~50,000 [CII] emitters (z>4.4)
 - Put unique constraints on the bright-end of CO and [CII] luminosity functions, which is inaccessible with ALMA (good for galaxy studies)
 - Put unique constraints (~5%) on the growth rate of the universe (RSD) at z = 2-3 and a purely new constraint (~20%) on RSD at z = 4 − 6 and beyond
 → synergies with Lyα-based surveys HETDEX and SPHEREx ??
- [OIII] 88µm & [CII] 158µm dual-line intensity mapping may be more promising ?
 → need more collaborations with cosmology colleagues