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ADM decomposition

Perturbations

13

operators, hence on the Hilbert space, were implemented
in the bosonic Hilbert space by the adjoint action of the
displacement operator D(α), and amounted to a mere
shift of the ladders operators, as specified in (78). This
construction has been shown in Sec. II B to naturally
emerge while recovering the Schwinger representations
of the Lie group U(1) [42].
For a detailed analysis we address the reader to [12],

while for the purpose of this study it is enough no notice
that the same procedure can be applied to the fermionic
Hilbert space, but finding different results. Indeed tak-
ing the BCS states, which are Schwinger representations
of the SU(2) group, transformations induced by the dis-
placement operator D(ξ) turn out to be now Bogolubov
transformations:

ã = cos (|ξ|) a+
ξ

|ξ|
sin (|ξ|) b† , (95)

and

b̃† = cos (|ξ|) b† −
ξ̄

|ξ|
sin (|ξ|) b† . (96)

The importance of this transformation, and its relevant
physical consequences, will be clarified in [12]. For the
meantime, we notice that this is crucial to show invari-
ance of the microscopic condensate state under diffeo-
morphisms.

Appendix IV. Curvature perturbations

In this action we summarize how the theory of cosmo-
logical perturbations works within the standard set-up.
We retrace the very same footsteps that led to the def-
inition of the “curvature perturbation” variable ζ (see
e.g. Refs. [2, 43, 44]), in order to clarify the origin of the
prescription we proposed in Sec. III.
We start reminding that metric perturbations can be

cast in the ADM decomposition [45] of a generic line
element

ds2 = N2dt2 − γij(dx
i +N idt)(dxj +N jdt) , (97)

in which N denotes the lapse function and N i the shift
vector. A unit time-like vector nµ can be defined, which
is normal to the hypersurfaces of constant coordinate
time t and whose components read

nµ = (N, 0) , nµ = (−
1

N
,
N i

N
) . (98)

The extrinsic curvature tensor, which measures how
much the hyper-surface is curved in the way it sits in the
spacetime manifold, or in other words it measures the
failure of a vector tangent to the hyper-surface to remain
tangent after parallel transporting it with respect to the
Levi-Civita connection on the space-time manifold, reads

Kij = −∇(jni) = (99)

=
1

2N

(
−∂tγij + (3)∇(iNj) +

(3)∇(jNi)

)
,

in which (3)∇i refers to the covariant derivatives with re-
spect to the Levi-Civita connection on the spatial hyper-
surface. Extrinsic curvature can be decomposed in terms
of a symmetric traceless tensor Aij , namely Aijγij = 0,
plus the three-metric tensor itself times a scale quantity
θ, namely

Kij = −
θ

3
γij +Aij . (100)

The quantity θ appearing in (100) represents the volume
expansion rate of the spatial hypersurfaces along the in-
tegral curves γ(τ) (the proper time τ is obtained by the
definition dτ = Ndt) of nµ, and is given by θ = ∇µnµ.
The number of e-folds of the expansion is therefore ex-
pressed, in terms of its dependence on two fixed time-
coordinates of the initial and final hypersurfaces and on
the comoving space coordinates xi, as

N(t1, t2;xj) =
1

3

ˆ

γ(τ)
θdτ =

1

3

t2
ˆ

t1

θNdt . (101)

The spatial metric γij can be then decomposed, introduc-
ing a local scale factor a(t, xi), and a unimodular metric
γ̃ij , namely

γij = a(t, xi) γ̃ij . (102)

The unimodular metric γ̃ij can be finally expressed in
terms of a primordial perturbations tensor, which is a
traceless matrix hij such that

γij = (eh)ij . (103)

The local scale factor a(t, xi) can be also decomposed into
a global scale factor, which is independent on the position
on the space hypersurfaces, and a local deviation ψ(t, xi),
namely

a(t, xi) = a(t) eψ(t,xi) , (104)

in which such a deviation is assumed to be for our pur-
poses a local (“scalar”) perturbation. In other words,
a(t) is chosen in such a way that ψ(t, xi) vanishes some-
where in the Universe. The gradient expansion method
[46–48] can be applied in order to expand inhomo-
geneities into their spatial gradients, and formally mul-
tiply them by a fictitious parameter ϵ regulating the ex-
pansion. Following [44], we may identify the infinitesimal
expansion parameter with the ratio between the Hub-
ble radius and a comoving scales of physical size, thus
ϵ = k/(aH). Then, on super-horizon scales Aij = O(ϵ),
which allow us to disregard it with respect to quantities
referring to a homogenous and isotropic FLRW universe.
Since the local expansion recasts as

θ =
3

N

(
ȧ(t)

a(t)
+ ψ̇

)
≡ 3H̃ , (105)Kavli-IPMU, 11th of March 2019
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Curvature perturbation variable 
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Macroscopic quantum states of matter I

Matter perturbations are evaluated as the the first order expansion 
of the expectation values on perturbed macroscopic states   

II

I Classical background fields correspond to expectation values on  
macroscopic (condensed) states

�(x) := h↵|�̂|↵i

��(x) := h↵+ �↵|�̂|↵+ �↵i|O(�↵)

Dona & Marciano, arXiv:1605.09337 (PRD 2016)

Kavli-IPMU, 11th of March 2019



Macroscopic quantum states of matter II

Off-diagonal long ranged order (ODLRO) and vanishing of 
correlations at large space-time distances 

II

III Density matrix and infrared mode of the macroscopic state 

3

It is useful to relate the expectation values of operators
on a coherent state with vacuum expectation values of a
the transformed operator

h↵|� (x1) . . .� (xn) |↵i (8)

= h0|D† (↵)� (x1) . . .� (xn)D (↵) |0i (9)

= h0| (� (x1) + �↵ (x1)) . . . (� (xn) + �↵ (xn)) |0i ,
(10)

or more in general

h↵| O (� (x)) |↵i = h0| O (� (x) + �↵ (x)) |0i . (11)

Furthermore the expectation value of a normal ordered
operator on a coherent state is exactly its classical value

h↵| : O (� (x)) : |↵i = O (�↵ (x)) . (12)

The energy density of the system on such a state imme-

diately follows, once the dispersion relation Ek =
p
~k2 is

recovered from the classical equations of motion, namely

1

V

ˆ
V

h↵|H (x) |↵i =
ˆ

d3k

(2⇡)3
Ek |↵k|2 , (13)

in which the integral
´
V

is over a fiducial volume V that
is finally send to infinite.

B. Generalized coherent state and scalar fields

The coherent state construction we illustrated in the pre-
vious section can be readily generalized to the simplest
compact group SU(2) by utilizing the Schwinger rep-
resentation of its Lie algebra. Let’s consider first the
Hilbert space of two harmonic oscillators spanned by the
creation (annihilation) operators a†1, a

†
2 (a1, a2). On this

Hilbert space we can define the following operators

Ja ⌘ (⌧a)↵� a†↵a� , (14)

where ⌧a are the SU(2) generators, a = 1, 2, 3 and ↵,� =
1, 2. It is straightforward to verify that

⇥
Ja, Jb

⇤
=

⇥
⌧a, ⌧ b

⇤↵�
a†↵a� = i✏abcJc (15)

generates a SU(2) algebra. Following the construction
described in detail in Appendix II, it is immediate to
construct a SU(2) coherent states. Since a scalar field
contains infinitely many harmonic oscillators, it is su�-
cient to choose how to couple the oscillators (e.g. we can

fix a momentum ~p, then for each momentum ~k we can
pick the couple a~k and a~k+~p). For each couple of modes

we can finally define a SU(2) coherent state, and consider
the tensor product of all of them for our purposes.

Furthermore, the same very prescription is generaliz-
able to any SU(N) [23, 24]

C. O↵-diagonal long range order and zero mode

Let us now focus on the (Hadamard) one-particle den-
sity matrix evaluated on the coherent state |↵i, which
is expressed as the Fourier transform of the momentum
distribution Nk = ha†kaki by

⇢1�p(x� x0) =

ˆ
k,k0

e�ı(kx�k0x0)ha†kak0i

=

ˆ
k

e�ıEk(t�t0)eı
~k·(~x�~x0)ha†kaki .

We are dealing with a coherent state that is picked
around a certain macroscopic value k0, whose occupa-
tion number is a macroscopic number N0 = |↵k0 |2 such
that all the other |↵k| are small. This coherent state will
have a momentum distribution

Nk = N0�(k, k0) + n(k) , (16)

in which with n(k) we denote a smooth function of k.
The density matrix now reads

⇢1�p(t� t0; ~x� ~x0) =
N0

V
+

ˆ
k

e�ı~k·(~x�~x0) n(k) .

The constant contributions to ⇢1�p(t � t0; ~x � ~x0) repre-
sents a condensate, labelled by n0 ⌘ N0/V . There exist
coherent states endowed with a su�ciently smooth n(k)
such that in the limit of large ||x � x0|| (here the norm
must be intended as the distance in a Minkowski flat
space-time)

lim
||x�x0||!1

⇢1�p(t� t0; ~x� ~x0) = h�(x)�(x0)i0 ⌘ n0 .

This is a natural extension of the concept of o↵-diagonal
long ranged order (ODLRO) [25, 26]. For superfluid the
interpretation is rather straightforward, because of the
quantum coherence of the condensate, and has to do
with the quantum mechanical amplitude of a process in
which a particle is annihilated at ~x, where it gets ab-
sorbed into the condensate, and another one is created
at ~x0, where it exits the condensate. Nonetheless, ex-
actly as for a superfluid one expects that at large space
distances quantum correlations must be suppressed, we
expect for the relativistic system under scrutiny that in
the limit ||x � x0|| ! 1 the expectation value of the
product of fields as space-time points far a part behave
like the expectation value of the product of the fields:

lim
||x�x0||!1

⇢1�p(x� x0) ' h�(x)i0 h�(x0)i0 ⌘ n0 .

The order parameter, playing the role of a macroscopic
wave-function in condensed matter systems, is exactly
the classical expectation value of the real scalar field

h�(x)i0 = �↵(x) .
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Bosonic statistics and coherent states 
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d
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�ikx + a

†
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+ikx
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Y

k

|↵ (k)i =
Y
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†
k�↵⇤(k)ak |0i = D (↵) |0i

Bosonic Hilbert space and infinite occupation numbers

D (↵)† � (x)D (↵) = � (x) + �↵ (x)

Displacement operator 

h↵| O (� (x)) |↵i = h0| O (� (x) + �↵ (x)) |0i

Dona & Marciano, arXiv:1605.09337 (PRD 2016)
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Matter perturbations at linear order

Expanding perturbations in the conservation equation

�Gµ⌫ =
8⇡G

c4
h↵+ �↵| \Tµ⌫(�)|↵+ �↵i

���
O(�↵)

3(⇣ +  )h↵|b⇢+ bp |↵i = �h↵+ �↵|b⇢|↵+ �↵i
���
O(�↵)

Example: Chaotic Inflation

h↵+ �↵| b⇢ |↵+ �↵i = lim
x!y

1

2
m

2 h↵+ �↵| b�(x) b�(y) |↵+ �↵i = 1

2
m

2 [�
↵+�↵

(x)]2
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Power spectrum of scalar perturbations

�b⌅ = b11 (t, xi) +
b⇢

3h↵|b⇢+ bp |↵i

h↵| b̈�+ 3H ˙̂
�+ \V 0(�)|↵i = 0 �! 3H�↵ ' �V (�↵)

Slow-roll condition

Power spectrum

P⇣ = lim
x!y

h↵+ �↵| b⌅(x) b⌅(y) |↵+ �↵i
���
O(�↵2)
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Fermion fields and linear perturbations

��! �( ̄ ) = � ̄  +  ̄ � 

 (t) = h↵| ̂|↵i = h↵|R†(')R(') ̂R†(')R(')|↵i|'=2⇡ = � (t)

A no-go argument:II

I Pressure perturbations (non adiabatic) and conservation of 
curvature perturbations 

⇣̇ = � H

⇢+ p
�pna

Alexander, Brandenberger, Calcagni, Hui, Nicolis, Piazza, Prokopec, Sasaki, etc...  
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Fermion fields & macroscopic coherent states I

a†k ! c†k = a†k"b
†
�k#

Pauli exclusion principle and quasi particles

|↵i ⌘ e
R
d3k↵(k)c†k�↵⇤(k)ck |0i = D (↵) |0i

|n̂i = D(n̂) |j,�ji = |⇠i = exp

�
⇠J+ � ¯⇠J�� |j,�ji

BCS states as macroscopic coherent states 

BCS states are SU(2) coherent states 

J1 =
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2
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a†b† + h.c.

�
, J2 = � i

2

�
a†b† � h.c.

�
, J3 =

1

2

�
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�
, [Ji, Jj ] = i✏ k

ij Jk
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Bogolubov transformations & non-BD states

Adjoint action of displacement operators 

Dona & Marciano, arXiv:1605.09337 (PRD 2016)
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respectively bosonic and fermionic, which are coherent
in that they minimize the uncertainty relations between
conjugated variables. In this study macroscopic states
were merely addressed at the kinematical level. Nonethe-
less, in a forthcoming work [12] we will show which effects
arise from considering the dynamics, focusing on the phe-
nomenological consequences and restrictions induced by
the latter.
We notice that such an interpretation is implicit is sev-

eral investigations recently deepened in the literature of
inflation [13, 14] and dark energy [15–18]. The unques-
tionable novelty of this analysis stands anyway in link-
ing the semiclassical limit of the quantum theory, and
the macroscopic state of matter, to the development of
a new setting for addressing the cosmological perturba-
tions. The latter are then the by-product of the assump-
tion of semi-classicality, and arise from the perturbations
of the distributions in the momentum space that enter
the macroscopic states.
The plan of the paper is the following. In Sec. II we in-

troduce macroscopic states of matter for bosonic matter
fields, we specify their generalization and discuss their
physical meaning. In Sec. III we switch to the discus-
sion of cosmological perturbations in the bosonic sector:
we introduce a general framework to derive cosmologi-
cal perturbations from the perturbation of the number
density in the macroscopic coherent states of matter; we
construct a quantum operator whose expectation value
in the coherent perturbed states corresponds to the cur-
vature perturbation variable; we finally outline how to
derive standard results. In Sec. IV we introduce macro-
scopic coherent states for fermionic matter, and specify
the difference of our procedure with respect to bosoniza-
tion. We then focus on the well known BCS states, and
their SU(2) coherent states equivalents. In Sec. V we
develop, on the same foot of Sec. III, a theory of cos-
mological perturbations that account for linear contri-
butions from the fermionic sector. In Sec. VI we show
how number densities of macroscopic states transform
under diffeomorphisms, and prove that coherent states
are mapped into coherent states. In Sec. VII we spell
conclusions and remarks. Detailed appendices follow on
coherent states in the bosonic and fermionic sectors, on
the relation between Bogolubov transformations and the
adjoint action of the displacement operators, on the cos-
mological perturbations, and on the phenomenological
observable which are sensitive to our analysis.

II. MACROSCOPIC STATES OF MATTER:
SCALAR FIELDS

Quantum mechanics (QM) is the fundamental framework
we rely on to understand Nature [19–21]. No disproval of
this very fundamental framework have been recovered so
far, and experimental data do actually confirm us in our
every day life that quantum mechanics must not be ques-
tioned yet. We then start taking into account the states

whose fluctuations of the number operator are negligible
for a large number of quanta within the system that is
considered. These are the coherent states [21], and rep-
resent a macroscopic wave-function that takes a special
role in recovering the semiclassical limit [22] of quantum
mechanical operators in quantum field theory (QFT).

A. Coherent state for scalar fields

For the purpose of simplicity in what follows we will treat
the case of a free real scalar field on flat (Minkowski)
background, whose density Lagrangian and Hamiltonian
in natural units read respectively

L(x) = ∂µφ(x)∂
µφ(x) , (1)

H(x) = π2(x) +∇φ(x) ·∇φ(x) ,

having introduced the conjugated momentum π(x) =
φ̇(x) to φ(x), in which the dot denotes derivative with
respect to time. The field φ(x) (and similarly its conju-
gated momentum) is decomposed in the Fock basis of the
harmonic linear oscillators, as a superposition of creation
and annihilation operators for each mode:

φ (x) =

ˆ

k

(
ake

−ikx + a†ke
+ikx

)
, (2)

where the integration over the momentum space has to
be understood with the appropriate measure. We then
naturally extend the definitions of the quantum mechan-
ical harmonic oscillator coherent state (see the Appendix
I for more details), and consider the bosonic coherent
state, labelled by the function α(k) : R3 → C,

|α⟩ ≡
∏

k

|α (k)⟩ =
∏

k

eα(k)a
†
k−α

∗(k)ak |0⟩ (3)

= e
´

d3kα(k)a†
k−α

∗(k)ak |0⟩ = D (α) |0⟩ .

The displacement operator D (α) = exp(αa† − α∗a) in-
herits all the property of the harmonic oscillator coun-
terparts (see e.g. Appendix I), in particular it is unitary
and its action on a creation operator is

D (α)† akD (α) = ak + α(k) , (4)

D (α)† a†kD (α) = a†k + α∗(k) . (5)

One trivially obtains that the classical real scalar field in
terms of the function α is expressed as

φα (x) ≡ ⟨α|φ (x) |α⟩

=

ˆ

k

(
αke

−ikx + α∗
ke

+ikx
)
. (6)

Then the action of the displacement operator on the
scalar field itself can be expressed in terms of the “clas-
sical” field φα.

D (α)† φ (x)D (α) = φ (x) + φα (x) . (7)
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U(1) bosonic case

 SU(2) fermionic case

13

operators, hence on the Hilbert space, were implemented
in the bosonic Hilbert space by the adjoint action of the
displacement operator D(α), and amounted to a mere
shift of the ladders operators, as specified in (78). This
construction has been shown in Sec. II B to naturally
emerge while recovering the Schwinger representations
of the Lie group U(1) [42].
For a detailed analysis we address the reader to [12],

while for the purpose of this study it is enough no notice
that the same procedure can be applied to the fermionic
Hilbert space, but finding different results. Indeed tak-
ing the BCS states, which are Schwinger representations
of the SU(2) group, transformations induced by the dis-
placement operator D(ξ) turn out to be now Bogolubov
transformations:

ã = cos (|ξ|) a+
ξ

|ξ|
sin (|ξ|) b† , (95)

and

b̃† = cos (|ξ|) b† −
ξ̄

|ξ|
sin (|ξ|) b† . (96)

The importance of this transformation, and its relevant
physical consequences, will be clarified in [12]. For the
meantime, we notice that this is crucial to show invari-
ance of the microscopic condensate state under diffeo-
morphisms.

Appendix IV. Curvature perturbations

In this action we summarize how the theory of cosmo-
logical perturbations works within the standard set-up.
We retrace the very same footsteps that led to the def-
inition of the “curvature perturbation” variable ζ (see
e.g. Refs. [2, 43, 44]), in order to clarify the origin of the
prescription we proposed in Sec. III.
We start reminding that metric perturbations can be

cast in the ADM decomposition [45] of a generic line
element

ds2 = N2dt2 − γij(dx
i +N idt)(dxj +N jdt) , (97)

in which N denotes the lapse function and N i the shift
vector. A unit time-like vector nµ can be defined, which
is normal to the hypersurfaces of constant coordinate
time t and whose components read

nµ = (N, 0) , nµ = (−
1

N
,
N i

N
) . (98)

The extrinsic curvature tensor, which measures how
much the hyper-surface is curved in the way it sits in the
spacetime manifold, or in other words it measures the
failure of a vector tangent to the hyper-surface to remain
tangent after parallel transporting it with respect to the
Levi-Civita connection on the space-time manifold, reads

Kij = −∇(jni) = (99)

=
1

2N

(
−∂tγij + (3)∇(iNj) +

(3)∇(jNi)

)
,

in which (3)∇i refers to the covariant derivatives with re-
spect to the Levi-Civita connection on the spatial hyper-
surface. Extrinsic curvature can be decomposed in terms
of a symmetric traceless tensor Aij , namely Aijγij = 0,
plus the three-metric tensor itself times a scale quantity
θ, namely

Kij = −
θ

3
γij +Aij . (100)

The quantity θ appearing in (100) represents the volume
expansion rate of the spatial hypersurfaces along the in-
tegral curves γ(τ) (the proper time τ is obtained by the
definition dτ = Ndt) of nµ, and is given by θ = ∇µnµ.
The number of e-folds of the expansion is therefore ex-
pressed, in terms of its dependence on two fixed time-
coordinates of the initial and final hypersurfaces and on
the comoving space coordinates xi, as

N(t1, t2;xj) =
1

3

ˆ

γ(τ)
θdτ =

1

3

t2
ˆ

t1

θNdt . (101)

The spatial metric γij can be then decomposed, introduc-
ing a local scale factor a(t, xi), and a unimodular metric
γ̃ij , namely

γij = a(t, xi) γ̃ij . (102)

The unimodular metric γ̃ij can be finally expressed in
terms of a primordial perturbations tensor, which is a
traceless matrix hij such that

γij = (eh)ij . (103)

The local scale factor a(t, xi) can be also decomposed into
a global scale factor, which is independent on the position
on the space hypersurfaces, and a local deviation ψ(t, xi),
namely

a(t, xi) = a(t) eψ(t,xi) , (104)

in which such a deviation is assumed to be for our pur-
poses a local (“scalar”) perturbation. In other words,
a(t) is chosen in such a way that ψ(t, xi) vanishes some-
where in the Universe. The gradient expansion method
[46–48] can be applied in order to expand inhomo-
geneities into their spatial gradients, and formally mul-
tiply them by a fictitious parameter ϵ regulating the ex-
pansion. Following [44], we may identify the infinitesimal
expansion parameter with the ratio between the Hub-
ble radius and a comoving scales of physical size, thus
ϵ = k/(aH). Then, on super-horizon scales Aij = O(ϵ),
which allow us to disregard it with respect to quantities
referring to a homogenous and isotropic FLRW universe.
Since the local expansion recasts as

θ =
3

N

(
ȧ(t)

a(t)
+ ψ̇

)
≡ 3H̃ , (105)
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The macroscopic state obtained is the Bogolubov transform of the vacuum 
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Gravity with non-dynamical torsion I
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Gravity with non-dynamical torsion II
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Gravity with non-dynamical torsion III
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NJL mechanism applied to SM fermions
A. Addazi, P.  Chen &  A. Marciano, arXiv:1712.04848

8⇡GN and

P IJ
KL = �[IK�J]L � 1

2�
✏IJKL

contains the Levi-Civita symbol ✏IJKL multiplying the
Barbero-Immirzi parameter �. Thanks to this reformu-
lation of GR, one can couple the spin-connection !IJ to
Standard model fermions by means of

S
 

=
1

4

Z
d4x|e|

h
ı ̄�IeµI

⇣
1� ı

↵
�
5

⌘
rµ 

i
+ h.c. , (2)

where ↵ is a coupling constant. Within this action, the
covariant derivative can be divided in a torsionless and a
torsionful part. The torsional term induces every possible
four fermion terms of the form

Seff = �⇠

Z
d4x|e|JL

5

JM
5

⌘LM , (3)

where JL
5

stand for the fermionic axial currents JL
5

=
 ̄�5�L and ⇠ is a combination of the microscopic cou-
plings of the original Lagrangian ↵ and � of the form
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.

In full generality, we obtain every possible four-fermion
coupling compatible with the SM gauge group. All pos-
sible neutral quark and lepton axial currents are mixed
with each other. For example, in the quark sector, four-
fermion interaction like

(q̄al �
L�

5

ql a)(q̄
b
l �L�5ql b), (q̄al �

L�
5

ql c)(q̄
b
l �L�5ql d)✏ab✏

cd

are generated from the torsion coupling. Analogous
terms are generated in the leptonic sector. Finally,
baryon/lepton conserving neutral mixing currents among
quarks and leptons are sourced by torsion. The latter
terms do not generate composite scalarons, but can in-
troduce scalaron mixing.

Generically, a quantum field theory analysis of this
model that would take into account also loop corrections,
would be very complicated to achieve. Nonetheless, since
the number of species are involving a large number of SM
fields, we may perform the large-N approximation [14–
16, 19]. Thus, we will treat the full problem in a semi-
classical 1/N framework, in order to keep under control
the loop-corrections and the e↵ective potential we will
derive below.

Moving from Eq.(1), the e↵ective four-fermion action
casts in the large N-approximation as

Z p
�gd4x ̄(ı�µ(x)rµ �M) (4)

+
�

2Nf
[( ̄ )( ̄ ) + ( ̄ı�

5

 )( ̄ı�
5

 )] ,

where Nf is the number of fermions, M is the fermion
mass matrix, the coupling constant recasts � = ⇠, the

notation �µ(x) = eµI (x) �
I is adopted and the interac-

tion terms ( ̄ )( ̄ ) and ( ̄ı�
5

 )( ̄ı�
5

 ) include all
the possible neutral charge four-fermion operators, com-
patible with the SM gauge symmetries. We may neglect
the fermion masses in the following analysis, motivated
by the high hierarchy among the SM particles masses and
the inflation scale.
The e↵ective field theory of composite scalarons can be

conveniently studied within the framework of the func-
tional methods, by introducing auxiliary fields ⇧. The
total action can then be recast as

S = SEH + S
⇧

, (5)

where S
⇧

is
Z p

�g d4x [ ̄ı�µ(x)rµ (6)

�Nf

2�
(|⇧|2 + |⌃|2)�  ̄(⌃+ ı�

5

⇧) ] .

⇧ and ⌃ are matrices of scalar and pseudoscalar fields.
The generating functional is

Z[⌘, ⌘̄] =

Z
D D ̄D⇧D⌃ eıS+ı⌘̄ +ı¯ ⌘ , (7)

where ⌘, ⌘̄ are grassmannian source functions. Perform-
ing the grassmannian integration over all the fermions
and setting the sources to zero, we obtain the e↵ective
partition functional

Z[0, 0] =
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where ⇧ and ⌃ are treated as classical slow-varying fields.
The second formal term of the expression can be esti-

mated using the proper time method [20]. One obtains
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In large the N and weakly varying curvature approx-
imations, a general expression for the e↵ective potential
in curved space-time can be recovered. In particular, the
propagator from x to x, corresponding to a bubble dia-
gram of the e↵ective scalar, is
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Within the weakly varying curvature approximation
— Ṙ ' 0, compatibly with the inflationary regime — we
obtain the final e↵ective potential V (A) for the composite
particles to be
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(c is a numerical prefactor). The last term can be seen as
!(A)R term. In other words, this theory is a composite
multi scalars-tensor theory. For every flavor of fermions

Nf , we have Nf composite states, i.e. ⇧ is a Nf dimen-
sional scalar multiplet. In particular, this expression can
be instantiated within FLRW background, entailing
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where V
0

= V (A)|A=0

. We will study now the e↵ective
potential in the slow-roll regime Ḣ << H2.
The potential Eq.(16) involves mixing terms among all

the scalar and pseudo-scalar fields belonging to the ma-
trix multiplets ⌃ and ⇧. This certainly leads to a highly
complicated dynamics, typical of a multi-field scenario.
Nonetheless, the situation is very much simplified if we
consider an initial custodial global symmetry which is
dynamically broken by the curvaton mechanism. In this
case, a sub-group among all initial scalars and pseudo-
scalars emerge as a pseudo Nambu-Goldstone bosons of
the initial custodial symmetry, i.e. these fields are much
lighter then the others. This is very much the same
of what happens in QCD, where the pions and the ⌘-
mesons are pseudo-NG bosons of the chiral symmetry,
while the other mesons are much more massive — like
the ⌘0-meson. Another possibility is to select the possible
four-fermion interactions by imposing flavor or horizontal
gauge symmetries — similarly to what was done within
the context of large extra-dimensions scenarios, in order
to avoid dangerous flavor changing neutral currents [21].
Thus, we can suppose that only these pseudo-NB

bosons will trigger inflation, the other ones being more
massive. In the simpler case, we can suppose the the cur-
vaton mechanism dynamically breaks an initial vector or
axial global U(1). Then only one (pseudo-)scalaron re-
mains lighter than the other ones, and a single inflation
scenario can be envisaged. Within the case of an initial
vector-like global symmetry U(1)V , we finally obtain the
single field potential
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where a is the pseudo-NG boson of the initial U(1)V .
We can now discuss the phenomenology of the e↵ective

composite scalars emerging from the torsion coupling.
In particular, we will show that the e↵ective compos-
ite scalar may provide a good candidate for inflation. As
is known, the slow roll parameters ✏, ⌘ are related to the
e↵ective inflaton potential Eq. (16) as
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where a is the pseudo-NG boson of the initial U(1)V .
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composite scalars emerging from the torsion coupling.
In particular, we will show that the e↵ective compos-
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FIG. 1: For the case of single-field inflation, we display in
unit of Planck masses the (⇤, a) space that is allowed, once
constraints on ns and �R from Planck are taken into account.
The brown-edge lines lying in the region outside the blue con-
strained subspace encircle values compatible with the Planck
data.

(See Appendix for explicit general expressions of the
slow-roll parameters).

We can put severe constraints on the parameter spaces
of our model allowed by the observational data. The ✏-
parameter is related to

�2

R ' V
0
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and is constrained to be
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R, exp = 2, 215⇥ 10�9 (19)

from the Planck data [1]. On the other hand, the number
of e-folding
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is constrained to be approximately 73.5, corresponding
to |⌘| ' 0.02. In fact N ' 3
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(1/|⌘|� 1/|⌘end|), which
corresponds to ⌘ = � 1

2N/3+1

, once we have set |⌘end| = 1
as a convention.

Relying on these constraints, we are able to exclude
a large subspace of parameters. First, we find that the
model is incompatible with the Planck data if ��1 6=
⇤2/4⇡2, for any choice of ⇤, H. The only parameters’
subspace compatible with the Planck data lies in the
critical branch ��1 = ⇤2/4⇡2. In Fig. 1, we show the
constraints to the single inflaton field configuration and
the UV scale ⇤ arising from nexp

s and �exp
R . In partic-

ular, we find that, for ⇤ = 10�3MPl, V0

= ⇤4, Planck
constraints can be easily satisfied. The excursus of the
inflaton field during inflation approaches the Planck scale
without exceeding it. This avoids the transplanckian ex-
cursion problem.

As is well-known, the r parameter is defined as

r =
PT (k⇤)

P⇣(k⇤)
,

where k⇤ is the so-called pivot scale (k⇤ = 0.002Mpc�1).
For ⇤ ' 2⇥ 1015 ÷ 1016 GeV, the tensor spectrum casts

PT =
2H2

inf

⇡2M2

Pl

' 2V
0

3⇡M4

Pl

⇠ 10�13 ÷ 10�11 ,

where H
inf

is the Hubble expansion rate during inflation.
The scalar spectrum must be P⇣ ⇠ 2.1⇥ 10�9, implying
r = 10�4 ÷ 10�2. As a consequence, for a UV scale close
to the GUT scale, our model predicts a r parameter value
that is detectable in next generation of experiments like
the BICEP 3 and ALI projects.
In conclusion, we have explored an inflation mecha-

nism that is originated from the torsion-fermion coupling,
within the context of the Einstein-Cartan-Holst-Sciama-
Kibble theory. In particular, we have shown how the tor-
sion induces e↵ective four-fermions interaction and how
the low-energy dynamics can be described from an ef-
fective Nambu-Jona-Lasinio model. We have computed
the e↵ective interaction potential driving the NJL fields,
and we have compared it with current constraints arising
from Planck data. We have put stringent constraints on
the parameters space of the model, and have shown that
the model is not ruled out if and only if the four-fermion
coupling � generated by the torsion have a precise critical
value.
We have discussed how the r-parameter can be high as

r ⇠ 10�2, in a natural sub-region of possible parameters
entering the e↵ective potential. This scenario can be fal-
sified by B-mode phenomenology that will be developed
by forthcoming data from the BICEP 3 and ALI-CMB
collaborations.
Finally, we comment on the case of of inflation with

multi-composite fields of the NJL model — which was
not analyzed in this paper. We have limited our-self
to the phenomenological analysis of the single-field in-
flation, invoking a custodial or flavor symmetries. How-
ever, a multi-field inflation scenario can be naturally en-
visaged within this context, leading to non-gaussianities
in the CMB. This case lies in the e↵ective field the-
ory parametrization for multi-field inflation proposed in
Ref.[23]. Further constraints will arise in this scenario
from the analysis of cross-correlation functions, which
are naturally generated in the multi-composite fields
fermionic approach, the latter accounting for parity vio-
lating terms as well.
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FIG. 1: For the case of single-field inflation, we display the
(⇤, a) space that is allowed once constraints on ns and �R

from Planck are taken into account. The brown-edge lines
lying in the region outside the blue constrained subspace en-
circle values compatible with the Planck data.
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FIG. 1: For the case of single-field inflation, we display the
(⇤, a) space that is allowed once constraints on ns and �R

from Planck are taken into account. The brown-edge lines
lying in the region outside the blue constrained subspace en-
circle values compatible with the Planck data.

(See Appendix for explicit general expressions of the
slow-roll parameters).
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subspace compatible with the Planck data lies in the
critical branch ��1 = ⇤2/4⇡2. In Fig. 1, we show the
constraints to the single inflaton field configuration and
the UV scale ⇤ arising from nexp

s and �exp
R . In partic-

ular, we find that, for ⇤ = 10�3MPl, V0

= ⇤4, Planck
constraints can be easily satisfied. The excursus of the
inflaton field during inflation approaches the Planck scale
without exceeding it. This avoids the transplanckian ex-
cursion problem.

As is well-known, the r parameter is defined as

r =
PT (k⇤)

P⇣(k⇤)
,

where k⇤ is the so-called pivot scale (k⇤ = 0.002Mpc�1).
For ⇤ ' 2⇥ 1015 ÷ 1016 GeV, the tensor spectrum casts

PT =
2H2

inf
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' 2V
0

3⇡M4

Pl

⇠ 10�13 ÷ 10�11 ,

where H
inf

is the Hubble expansion rate during inflation.
The scalar spectrum must be P⇣ ⇠ 2.1⇥ 10�9, implying
r = 10�4 ÷ 10�2. As a consequence, for a UV scale close
to the GUT scale, our model predicts a r parameter value
that is detectable in next generation of experiments like
the BICEP 3 and ALI projects.
In conclusion, we have explored an inflation mecha-

nism that is originated from the torsion-fermion coupling,
within the context of the Einstein-Cartan-Holst-Sciama-
Kibble theory. In particular, we have shown how the tor-
sion induces e↵ective four-fermions interaction and how
the low-energy dynamics can be described from an ef-
fective Nambu-Jona-Lasinio model. We have computed
the e↵ective interaction potential driving the NJL fields,
and we have compared it with current constraints arising
from Planck data. We have put stringent constraints on
the parameters space of the model, and have shown that
the model is not ruled out if and only if the four-fermion
coupling � generated by the torsion have a precise critical
value.
We have discussed how the r-parameter can be high as

r ⇠ 10�2, in a natural sub-region of possible parameters
entering the e↵ective potential. This scenario can be fal-
sified by B-mode phenomenology that will be developed
by forthcoming data from the BICEP 3 and ALI-CMB
collaborations.
Finally, we comment on the case of of inflation with

multi-composite fields of the NJL model — which was
not analyzed in this paper. We have limited our-self
to the phenomenological analysis of the single-field in-
flation, invoking a custodial or flavor symmetries. How-
ever, a multi-field inflation scenario can be naturally en-
visaged within this context, leading to non-gaussianities
in the CMB. This case lies in the e↵ective field the-
ory parametrization for multi-field inflation proposed in
Ref.[23]. Further constraints will arise in this scenario
from the analysis of cross-correlation functions, which
are naturally generated in the multi-composite fields
fermionic approach, the latter accounting for parity vio-
lating terms as well.
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the low-energy dynamics can be described from an ef-
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the model is not ruled out if and only if the four-fermion
coupling � generated by the torsion have a precise critical
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where A = ⌃+ ı�
5

⇧ and

S(x, y;A) = hx|(ıI�µrµ �A)�1|yi (11)

is the matrix propagator associated to the classical ma-
trix equation

(ıI�µ(x)rµ �A)S(x, y;A) = I
1p

�g(x)
�4(x� y) . (12)

Let us expand around the background A = Ā+ �A.

lnDet {ıI�µ(x)rµ �A} = Tr ln {ıI�µrµ �A} (13)

= Tr ln{ıI�µ(x)rµ �A}�
Z

d4Tr{�A(x)SF (x, x)}
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2

Z
d4x

Z
d4y �A(x)SF (x, y) �A(y)SF (y, x) + ... ,

where SF is the fermion propagator provided by

p
�g(iI�µ(x)rµ �M)SF (x, y) = i�4(x� y)I . (14)

In large the N and weakly varying curvature approx-
imations, a general expression for the e↵ective potential
in curved space-time can be recovered. In particular, the
propagator from x to x, corresponding to a bubble dia-
gram of the e↵ective scalar, is

S(x, x;A) =

Z
d4q

(2⇡)4

h
(I�aqa +A)

1

q2 � |A|2 (15)

� 1

12
R(I�aqa +A)

1

(q2 � |A|2)2

+
2

3
Rµ⌫q

µq⌫(I�aqa +A) +
1

(q2 � |A|2)3

�1

8
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(q2 � |A|2)2
i
.

Within the weakly varying curvature approximation
— Ṙ ' 0, compatibly with the inflationary regime — we
obtain the final e↵ective potential V (A) for the composite
particles to be

V (A)= Ṽ (A)� 1

(4⇡)2
R
6

h
�|A|2ln

⇣
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2

|A|2

⌘
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2|A|2
⇤

2
+|A|2

i
,

where

Ṽ = V
0
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⇣
1 + ⇤

2
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⌘i
,

V
0

= V (A)|A=0

and ⇤2 = c(⇠)�1 is the UV cuto↵ scale
(c is a numerical prefactor). The last term can be seen as
!(A)R term. In other words, this theory is a composite
multi scalars-tensor theory. For every flavor of fermions

Nf , we have Nf composite states, i.e. ⇧ is a Nf dimen-
sional scalar multiplet. In particular, this expression can
be instantiated within FLRW background, entailing

V (A) = V
0
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2� |A|2

� 1

4⇡2

h
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where V
0

= V (A)|A=0

. We will study now the e↵ective
potential in the slow-roll regime Ḣ << H2.
The potential Eq.(16) involves mixing terms among all

the scalar and pseudo-scalar fields belonging to the ma-
trix multiplets ⌃ and ⇧. This certainly leads to a highly
complicated dynamics, typical of a multi-field scenario.
Nonetheless, the situation is very much simplified if we
consider an initial custodial global symmetry which is
dynamically broken by the curvaton mechanism. In this
case, a sub-group among all initial scalars and pseudo-
scalars emerge as a pseudo Nambu-Goldstone bosons of
the initial custodial symmetry, i.e. these fields are much
lighter then the others. This is very much the same
of what happens in QCD, where the pions and the ⌘-
mesons are pseudo-NG bosons of the chiral symmetry,
while the other mesons are much more massive — like
the ⌘0-meson. Another possibility is to select the possible
four-fermion interactions by imposing flavor or horizontal
gauge symmetries — similarly to what was done within
the context of large extra-dimensions scenarios, in order
to avoid dangerous flavor changing neutral currents [21].
Thus, we can suppose that only these pseudo-NB

bosons will trigger inflation, the other ones being more
massive. In the simpler case, we can suppose the the cur-
vaton mechanism dynamically breaks an initial vector or
axial global U(1). Then only one (pseudo-)scalaron re-
mains lighter than the other ones, and a single inflation
scenario can be envisaged. Within the case of an initial
vector-like global symmetry U(1)V , we finally obtain the
single field potential

V (a) = V
0
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2
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i
,

(16)

where a is the pseudo-NG boson of the initial U(1)V .
We can now discuss the phenomenology of the e↵ective

composite scalars emerging from the torsion coupling.
In particular, we will show that the e↵ective compos-
ite scalar may provide a good candidate for inflation. As
is known, the slow roll parameters ✏, ⌘ are related to the
e↵ective inflaton potential Eq. (16) as

✏[a]

M2

Pl

=
1

2

✓
V 0[a]

V [a]

◆
2

,
⌘[a]

M2

Pl

=
V 00[a]

V [a]
. (17)
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There exist two critical branches for compatibility with data

I) ��1 =
⇤2

2⇡2

FIG. 1: For the case of single-field inflation, we display the
(⇤, a) space that is allowed once constraints on ns and �R

from Planck are taken into account. The brown-edge lines
lying in the region outside the blue constrained subspace en-
circle values compatible with the Planck data.

(See Appendix for explicit general expressions of the
slow-roll parameters).

We can put severe constraints on the parameter spaces
of our model allowed by the observational data. The ✏-
parameter is related to

�2

R ' V
0

24⇡2M4

Pl✏
, (18)

and is constrained to be

�2

R, exp = 2, 215⇥ 10�9 (19)

from the Planck data [1]. On the other hand, the number
of e-folding

N =
1

M2

Pl

Z �

�end

d�
V 0

V
(20)

is constrained to be approximately 73.5, corresponding
to |⌘| ' 0.02. In fact N ' 3

2

(1/|⌘|� 1/|⌘end|), which
corresponds to ⌘ = � 1

2N/3+1

, once we have set |⌘end| = 1
as a convention.

Relying on these constraints, we are able to exclude
a large subspace of parameters. First, we find that the
model is incompatible with the Planck data if ��1 6=
⇤2/4⇡2, for any choice of ⇤, H. The only parameters’
subspace compatible with the Planck data lies in the
critical branch ��1 = ⇤2/4⇡2. In Fig. 1, we show the
constraints to the single inflaton field configuration and
the UV scale ⇤ arising from nexp

s and �exp
R . In partic-

ular, we find that, for ⇤ = 10�3MPl, V0

= ⇤4, Planck
constraints can be easily satisfied. The excursus of the
inflaton field during inflation approaches the Planck scale
without exceeding it. This avoids the transplanckian ex-
cursion problem.

As is well-known, the r parameter is defined as

r =
PT (k⇤)

P⇣(k⇤)
,

where k⇤ is the so-called pivot scale (k⇤ = 0.002Mpc�1).
For ⇤ ' 2⇥ 1015 ÷ 1016 GeV, the tensor spectrum casts

PT =
2H2

inf

⇡2M2

Pl

' 2V
0

3⇡M4

Pl

⇠ 10�13 ÷ 10�11 ,

where H
inf

is the Hubble expansion rate during inflation.
The scalar spectrum must be P⇣ ⇠ 2.1⇥ 10�9, implying
r = 10�4 ÷ 10�2. As a consequence, for a UV scale close
to the GUT scale, our model predicts a r parameter value
that is detectable in next generation of experiments like
the BICEP 3 and ALI projects.
In conclusion, we have explored an inflation mecha-

nism that is originated from the torsion-fermion coupling,
within the context of the Einstein-Cartan-Holst-Sciama-
Kibble theory. In particular, we have shown how the tor-
sion induces e↵ective four-fermions interaction and how
the low-energy dynamics can be described from an ef-
fective Nambu-Jona-Lasinio model. We have computed
the e↵ective interaction potential driving the NJL fields,
and we have compared it with current constraints arising
from Planck data. We have put stringent constraints on
the parameters space of the model, and have shown that
the model is not ruled out if and only if the four-fermion
coupling � generated by the torsion have a precise critical
value.
We have discussed how the r-parameter can be high as

r ⇠ 10�2, in a natural sub-region of possible parameters
entering the e↵ective potential. This scenario can be fal-
sified by B-mode phenomenology that will be developed
by forthcoming data from the BICEP 3 and ALI-CMB
collaborations.
Finally, we comment on the case of of inflation with

multi-composite fields of the NJL model — which was
not analyzed in this paper. We have limited our-self
to the phenomenological analysis of the single-field in-
flation, invoking a custodial or flavor symmetries. How-
ever, a multi-field inflation scenario can be naturally en-
visaged within this context, leading to non-gaussianities
in the CMB. This case lies in the e↵ective field the-
ory parametrization for multi-field inflation proposed in
Ref.[23]. Further constraints will arise in this scenario
from the analysis of cross-correlation functions, which
are naturally generated in the multi-composite fields
fermionic approach, the latter accounting for parity vio-
lating terms as well.
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For the second critical branch, perturbative reheating can be easily achieved 

where A = ⌃+ ı�
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is the matrix propagator associated to the classical ma-
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where SF is the fermion propagator provided by
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In large the N and weakly varying curvature approx-
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Within the weakly varying curvature approximation
— Ṙ ' 0, compatibly with the inflationary regime — we
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potential in the slow-roll regime Ḣ << H2.
The potential Eq.(16) involves mixing terms among all

the scalar and pseudo-scalar fields belonging to the ma-
trix multiplets ⌃ and ⇧. This certainly leads to a highly
complicated dynamics, typical of a multi-field scenario.
Nonetheless, the situation is very much simplified if we
consider an initial custodial global symmetry which is
dynamically broken by the curvaton mechanism. In this
case, a sub-group among all initial scalars and pseudo-
scalars emerge as a pseudo Nambu-Goldstone bosons of
the initial custodial symmetry, i.e. these fields are much
lighter then the others. This is very much the same
of what happens in QCD, where the pions and the ⌘-
mesons are pseudo-NG bosons of the chiral symmetry,
while the other mesons are much more massive — like
the ⌘0-meson. Another possibility is to select the possible
four-fermion interactions by imposing flavor or horizontal
gauge symmetries — similarly to what was done within
the context of large extra-dimensions scenarios, in order
to avoid dangerous flavor changing neutral currents [21].
Thus, we can suppose that only these pseudo-NB

bosons will trigger inflation, the other ones being more
massive. In the simpler case, we can suppose the the cur-
vaton mechanism dynamically breaks an initial vector or
axial global U(1). Then only one (pseudo-)scalaron re-
mains lighter than the other ones, and a single inflation
scenario can be envisaged. Within the case of an initial
vector-like global symmetry U(1)V , we finally obtain the
single field potential
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where a is the pseudo-NG boson of the initial U(1)V .
We can now discuss the phenomenology of the e↵ective

composite scalars emerging from the torsion coupling.
In particular, we will show that the e↵ective compos-
ite scalar may provide a good candidate for inflation. As
is known, the slow roll parameters ✏, ⌘ are related to the
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The potential Eq.(16) involves mixing terms among all

the scalar and pseudo-scalar fields belonging to the ma-
trix multiplets ⌃ and ⇧. This certainly leads to a highly
complicated dynamics, typical of a multi-field scenario.
Nonetheless, the situation is very much simplified if we
consider an initial custodial global symmetry which is
dynamically broken by the curvaton mechanism. In this
case, a sub-group among all initial scalars and pseudo-
scalars emerge as a pseudo Nambu-Goldstone bosons of
the initial custodial symmetry, i.e. these fields are much
lighter then the others. This is very much the same
of what happens in QCD, where the pions and the ⌘-
mesons are pseudo-NG bosons of the chiral symmetry,
while the other mesons are much more massive — like
the ⌘0-meson. Another possibility is to select the possible
four-fermion interactions by imposing flavor or horizontal
gauge symmetries — similarly to what was done within
the context of large extra-dimensions scenarios, in order
to avoid dangerous flavor changing neutral currents [21].
Thus, we can suppose that only these pseudo-NB

bosons will trigger inflation, the other ones being more
massive. In the simpler case, we can suppose the the cur-
vaton mechanism dynamically breaks an initial vector or
axial global U(1). Then only one (pseudo-)scalaron re-
mains lighter than the other ones, and a single inflation
scenario can be envisaged. Within the case of an initial
vector-like global symmetry U(1)V , we finally obtain the
single field potential

V (a) = V
0

+ 1

2� |a|
2

� 1

4⇡2

h
|a|2⇤2 + ⇤4ln

⇣
1 + |a|2

⇤

2

⌘
� |a|4ln

⇣
1 + ⇤

2

|a|2

⌘i

� 1

(4⇡)2 (Ḣ + 2H2)
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Quadratic term

Quartic term

The model converge to the form of the Coleman-Weinberg potential for 
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the statistical propagator into the helicity basis by means of Ph, F (h)(x; x0) = PhF (x; x0),

where 6

Ph ⌘ 1 + hĤ

2
, Ĥ ⌘ �0k̂ · ~��5 , (28)

and the � matrices are expressed in Weyl basis. We also assume that, because of spatial

homogeneity of the background space-time, the fermionic 2 point function assumes the form

(�iF (x; x0)) = (�iF (⌘, ⌘0; ~x � ~x0)) ⌘
Z

d~k

(2⇡)3
ei~k·(~x�~x0)(�iF (⌘, ⌘0; k~kk)) (29)

In a FLRW universe the helicity projector commutes with the Dirac operator [24] in (11),

so that we simply get7,

(i�0@⌘ � hk �0�5 � a(mR + i�5mI))(�iF (h)(⌘, ⌘0;~k)) (30)
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⇥(�iF (h)(⌘, ⌘0;~k)) ,

where we have also substituted the operator ~k · ~� = k~kk�0ĥ�5 and expanded in momentum

space. Note that the statement that the helicity operator commutes with the Dirac Hamil-

tonian is only true in FLRW spacetimes, and it is not the case in less symmetric spaces. It

would be hence instructive to study the evolution of fermions in less symmetric collapsing

space-times in which helicity is, in general, not conserved. For the scope of the present pa-

per, however, we are going to assume that the symmetry of the initial vacuum state respects

that of the background space. In this case the following block diagonal helicity Ansatz for

the fermionic Hadamard function, in Wigner representation, is exact [15, 20],
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(31)

where �a and ⇢a (a = 0, 1, 2, . . . , D�1) are the Pauli matrices (⇢0 = 1) and

fah(~k, x) =

Z

dk0

2⇡
eik0x0

gah(k, x) . (32)

6 The helicity projector (28) is correct in D = 4 only. Its suitable generalization to D dimensions is given

in e.g. [24]; since no subsequent results are a↵ected by that generalization, for simplicity we quote here

the D = 4 projector.
7 We now drop the notation m

(ren)
R

, and simply write m
R

, since m
(ren)
R

is just a parameter determined by

experiments.
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Multiplying the Dirac equation (30) and its hermitean conjugate by {1, �0, �5, �0�5}, respec-

tively, and taking traces over spinorial indices yields to the semiclassical equations for the

currents defined in (32)

@⌘f0h(~k) = 0, (33a)

@⌘f1h(~k) + 2h|~k|f2h(~k) � 2amIf3h(~k) = (33b)
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,

@⌘f3h � 2amRf2h + 2amIf1h = 0. (33d)

where we assumed fah a homogeneous and isotropic state in which case fah = fah(⌘, k) (k =

k~k k) and we used the Wick theorem to evaluate the interaction terms in the Hartree-Fock

approximation (see Figure 6), in the same way discussed in appendix B. We have assume that

the vacuum contribution has been removed from the currents (32) by the renormalization

and regularization procedure performed in the appendix B, such that only the regular part

of F actually contributes to the equations of motion (33a–33d) and the energy momentum

tensor. In solving the interacting Dirac equation for the currents defined in (33a–33d), we

will consider the evolution of a fermionic isotropic fluid, evolving from an initial thermal

state. As we prove in appendix B for the two-loop perturbative renormalization of the

e↵ective action (B1), removing the divergent contributions from an initial Cauchy surface

leaves the regular part of the thermal fluid una↵ected. This is because the regular solution of

the equations (33a–33a), from the perspective of the vacuum fluid, is just a change of initial

conditions, and the renormalization scheme does not depend on initial conditions. This

statement should hold true at all orders in the perturbative renormalization of the e↵ective

action (B1), and if we choose to set all the non perturbatively renormalized parameters to

be small compared to the Planck mass Eqs. (33a–33a) are actually the correct equations to

study particle production in a contracting universe.

We are now going to solve the Dirac equations (33a–33d) in the light particle limit i.e.

|m| ⌧ kBT , by constructing a perturbation theory in powers of |m| and evaluating the

leading order mass correction to Eqs. (33a–33d). We choose to study this limit, because it

allows us to solve the equations (33a–33d) analytically for a general scale factor, as we will see
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Gravitational perturbations I 

Perturbed Einstein equations 

6

IX. PERTURBATED EINSTEIN EQUATION AND GAUGE ISSUES

The perturbation of Einstein Equation is

�Gµ
⌫ = 8⇡G�Tµ

⌫ , (40)

Then the perturbation of Einstein Equation is
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(41)

As we have taken the Newtonian gauge, we can promote all the perturbated variables to be gauge-invariant ones

by doing following replacements
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I. NOTATION

In this note, the notation of gravity potential  and � are used opposite accidently. The background and pertur-

bation values are written as

gµ⌫ = ḡµ⌫ + �gµ⌫ , gµ⌫ = ḡµ⌫ + �gµ⌫ , (1)

�

↵
µ⌫ =

¯

�

↵
µ⌫ + ��↵µ⌫ , Rµ⌫ =

¯Rµ⌫ + �Rµ⌫ ,

Gµ⌫ =

¯Gµ⌫ + �Gµ⌫ , Tµ⌫ =

¯Tµ⌫ + �Tµ⌫ ,

�µ =

¯

�µ + ��µ, �

µ
=

¯

�

µ
+ ��µ,

eµa = ēµa + �eµa ,

 =  0 + � , ¯ =

¯ 0 + � ¯ ,

II. METRIC, GEOMETRIC VARIABLES, AND DIRAC MATRIX

We take the Newtonian longitudinal gauge:

ds2 = (1 + 2 )dt2 � a2(1� 2�)�ijdx
idxj , (2)

The background metric are

ḡµ⌫ =

"
1

�a2(t)�ij

#
, ḡµ⌫ =

"
1

� 1
a2(t)�ij

#
,

The metric perturbation is

�gµ⌫ =

"
2 

a2(t)2��ij

#
, �gµ⌫ =

" �2 

� 1
a2(t)2��ij

#
,

The background a�ne connections and Einstein’s tensor are

¯

�

0
ij = aȧ�ij , ¯

�

i
0j = H�ij , (3)

¯R00 = �3

ä

a
, ¯Rij = 2ȧ2�ij + aä�ij ,

¯R = �6

✓
ä

a
+

ȧ2

a2

◆
,

¯G00 = 3

ȧ2

a2
, ¯Gij = �ȧ2�ij � 2aä�ij ,

The perturbation of a�ne connections are

��000 =

˙

 , ��00j = ��0j0 =  ,j , ��0ij = �2aȧ �ij � 2aȧ��ij � a2 ˙��ij (4)

��i00 =

1

a2
 ,i, ��i0j = ��ij0 = � ˙

��ij , ��ijk = ��,k�ij � �,j�ik + �,i�jk

The background and perturbation of Dirac matrix and vierbein are

¯

�

0
= �0, ¯

�

i
=

1
a�

i, (5)

��0 = � �0, ��i = �
a �

i,

¯

�0 = �0, ¯

�i = �a�i,

��0 =  �0, ��i = a��i,

ēµ0 = �µ0 , ēµi =

1
a�

µ
i ,

�eµ0 = � �µ0 , �eµi =

�
a �

µ
i ,
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Gravitational perturbations II 

Perturbed energy-momentum tensor from fermion action

ISW effect can be reconstructed 

Anisotropic dof are present Cross correlation functions 

�T 0
0 = hV 0iO(↵) h ̄ i|O(�↵);

�T 0
i =

3ı

8
�,lh �0�i�l iO(↵), (l 6= i)

�T i
j = �ijV

00h ̄ iO(↵) h ̄ i|O(�↵)

V = V ( ̄ )

A. Addazi, S. Alexander,  R. Brandenberger,  Y. Cai, L. Ji, A. Marciano & T. Qiu, in preparation 

Kavli-IPMU, 11th of March 2019

+ anisotropic terms



Conclusions

i) Fermionic matter cosmological perturbations  

ii) Spinorial perturbations entail non-isotropic d.o.f. not 
present in the scalar field perturbations  

 iii) Spinorial contributions can be recast in terms of a 
multi-field approach in inflationary scenarios 

iv) Inflation can be sourced by an infrared collective mode 
generated by condensation of SM fermions  

v) Constraints are satisfied, but phenomenology is reacher  

v) A falsifiable prediction for r can be provided
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ありがとう 

Grazie! 谢谢

Thank you! 
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