

GRAVITATIONAL PARTICLE CREATION FOR DARK MATTER AND REHEATING

SH and Jun'ichi Yokoyama, Phys. Rev. D 99, 043008 (2019)

Soichiro Hashiba RESCEU, The University of Tokyo

Collaborator: Jun'ichi Yokoyama

Accelerating Universe in the Dark @YITP, Kyoto University, 5 Mar.

GRAVITATIONAL PARTICLE CREATION

(L. Parker 1969)

- Vacuum state itself can change in curved spacetime
 → Particle number increases
 Gravitational particle creation
- This occurs when the conformal symmetry of particle is violated

CONFORMAL SYMMETRY

• Symmetry under the conformal transformation. $g_{\mu\nu} \mapsto \Omega^2 g_{\mu\nu}$

This symmetry is broken by

Mass term

 $\frac{1}{2}m^2\phi^2$ ϕ : scalar field

Non-conformal coupling

 $\frac{1}{2}\xi R\phi^2$ R: scalar curvature, $\xi \neq 1/6$

We use this

INFLATION AND REHEATING

Potential-driven

(L. F. Abbott+ 1982 *etc.*)

Inflaton oscillates after inflation and decays into SM particles Kinetically driven +

(C. Armendariz-Picon+ 1999)

No inflaton oscillation after inflation

⇒ Gravitational reheating

PARAMETERS

- Hubble parameter during inflation: H_{inf}
- Transition time scale: Δt
- Mass of produced scalar particle: *m*

NUMERICAL RESULT 1/2

(SH and J. Yokoyama 2019a)

Power spectrum of produced particles

NUMERICAL RESULT 2/2

(SH and J. Yokoyama 2019a)

6/14

Produced total energy densities

PURELY GRAVITATIONAL DARK MATTER (PGDM)

(M. Garny+ 2016, Y. Tang and Y.-L. Wu 2016, Y. Ema+ 2018)

- Dark matter which interacts with SM particles ONLY gravitationally (no weak interaction)
- Its extremely feeble interaction makes it difficult to produce PGDM thermally

OUR MODEL

- 2 massive scalar particles conformally coupled to gravity
 - Particle A

```
mass: m_A, decay rate: \Gamma = \alpha m_A
```

- \rightarrow Decay into radiation and realize reheating
- Particle X
 - mass: m_X
 - → Behave as PGDM

Both are produced gravitationally

8/

CONDITIONS TO BE SATISFIED

(Planck Collaboration 2018 VI)

- Present (cold) dark matter abundance $4 \times 10^{-2} \alpha^{1/4} e^{(3m_A - 4m_X)\Delta t} \frac{m_X^2 H_{\inf}^{1/4}}{m_A^{5/4}} = 4 \times 10^{-10} \text{ GeV}$
- Graviton's effective degree of relativistic freedom

$$\alpha^{-1/3} e^{-4m_A \Delta t} \left(\frac{m_A}{H_{\rm inf}}\right)^{5/3} > 2.3 \times 10^3$$

SUPPLEMENTARY EXPLANATION TO 2ND COND.

- Gravitons are also gravitationally produced
- They affect CMB spectrum and BBN (abundance of ⁴He)
- Hence, they should be "concealed" by radiation

CALCULATION RESULT

• α takes max. value 7.0×10⁻¹⁵ when $m_A = 0.42 H_{inf}$

• m_X takes min. value 5.8 TeV on the border

PLANCKIAN INTERACTION ?

• Smallness of α

CMB observation gives $\alpha < 7.0 \times 10^{-15}$

If interactions between particle *A* and SM particles are Planck suppressed such as

$$\mathcal{L}_{\text{int}} = \tilde{\lambda} \frac{m_A}{M_G} \overline{\Psi} \Psi$$

$$\Rightarrow \alpha = \frac{\tilde{\lambda}^2}{32\pi^2} \left(\frac{m_A}{M_G}\right)^2 \sim \frac{10^{-16}\tilde{\lambda}^2}{10^{-16}\tilde{\lambda}^2}$$

 $\alpha < 7.0 \times 10^{-15}$ means $\tilde{\lambda} < \mathcal{O}(1)$

TESTABILITY OF PGDM

- Too feeble interaction to be detected directly
- Search for their resultant structure?
 PGDMs are out-of-equilibrium throughout the history
 ⇒ They can form quite small-scale clumps

SUMMARY

- Sufficient amount of PGDMs can be gravitationally produced after inflation
 - → Gravitational particle creation can explain reheating and dark matter simultaneously!
- Scalar particle which decays into radiation must have a very small decay rate
 - \rightarrow Planckian interaction?

