Effect of magnification on la supernova cosmology

Atsushi J. Nishizawa (Nagoya IAR) <u>Hinako Sakakibara</u> (Nagoya), Masamune Oguri (U. Tokyo), Masayuki Tanaka (NAOJ), Bau-Ching Hsieh (ASAA), Kenneth Wong (Kavli IPMU)

> Accelerating Universe in the Dark March 4-8 @ YITP

Sakakibara, AJN+ 2019 https://arxiv.org/abs/1901.10129

type la Supernova as a standard candle

SN 1994d in NGC 4526

White dwarf with companion

- type la supernova can be a powerful tool for cosmology
- Almost uniform progenitor mass limit ~1.44 Msun white dwarf
- Almost uniform absolute flux
- Empirical laws to correct abs. flux

Supernova Cosmology

What's wrong with SNe cosmology?

scatter around LCDM best-fitting model can be explained by...

- Intrinsic scatter of SNe
 - SNe diversity(e.g. WD rotation, dust extinction,...)
- magnification due to the foreground LSS
- correcting for magnification may bring both accurate and precise measurement of cosmological parameters.

Expected impact from simulation

Method overview

measure intervening matter distribution for magnification correction by

1.convergence mass reconstruction

2.galaxy distribution

SNLS3 from CFHT

- D1, D2, D3, D4 fields ~ 4
 sq. deg. (Guy+2010)
- time domain photometry to track the light curve
- multi-color observation for color-dependent Phillips relation correction
- spec-z followups for accurate redshift determination of host galaxy

data set

LSS from Subaru-HSC

- HSC Wide S16A (in D1, D2, D3) for photometric redshift and weak lensing shape catalogs (Tanaka+2018, Mandelbaum+2018).
- HSC Deep S17A (COSMOS, XMM, AEGIS) photometric redshift catalog -> redshift PDF, stellar mass (Hsieh+2014, Tanaka+2015, Tanaka,

AJN+2018).

	convergence	direct measure
ref.	Sec. 5.1	Sec.5.2
HSC	HSC-Wide	HSC-Wide/Deep/U-Deep
SNLS	D1	D1, D2, D3
$N_{\rm SNe}$	49	151

measurement of foreground matter : WL convergence

- Assume Weak Lens approximation
- · gamma-kappa are related with each other
- apply smoothing to avoid divergence at small scales (~3 arcmin)

WL convergence - distance modulus correlation?

• smoothing scale \leftrightarrow n_{gal}

ZSN

0.7

0.8

0.9

1.0

0.6

0.3

0.2

0.4

0.5

measurement of foreground matter : galaxy distribution host gal.

- All galaxy has NFW profile with radius (Rvir) and concentration are derived from stellar mass
- use HSC galaxy and photo-z catalogs to obtain Mstellar + redshift of galaxies.
- Only galaxies interrupt SN light ray with their Rvir can contribute

measurement of foreground matter : galaxy distribution

Tow different photo-z catalogs

Mizuki (Template fitting)

DEmP (empirical)

galaxy distribution - distance modulus correlation?

- Grobal trend is consistent
- Mizuki underestimates (DEmP) overestimates) the magnification

	$\Delta \mu$ slope	corr. coeff.
Mizuki	0.47±0.22	0.07±0.08
DEmP	-0.13±0.10	-0.04±0.08

still not strong correlation

cosmological parameter estimation

$$-2 \ln \mathcal{L} = \sum_{s} \frac{\left[\mathbf{V}^{\mathrm{T}} \mathbf{X}_{s} - M - 5 \log_{10} \left[D_{L}(\Omega_{m}, w, z_{s}) \right] + 5 \right]^{2}}{\mathbf{V}^{\mathrm{T}} \mathbf{Cov}(\mathbf{X}_{s}) \mathbf{V} + \sigma_{\mathrm{int}}^{2}} \qquad m \to m' = \mu_{\mathrm{lens}} m$$

$$\mathbf{X}_{s} = \begin{pmatrix} m_{B,s}^{*} \\ \Gamma_{s} \\ C_{s} \end{pmatrix}, \mathbf{V} = \begin{pmatrix} 1 \\ \alpha \\ -\beta \end{pmatrix} \begin{pmatrix} m_{B,s}^{*} : \text{opparent mag.} \\ \Gamma_{s} : \text{shape of light curve} \\ C_{s} : \text{color of light curve} \end{pmatrix} \qquad \text{cosmological information}$$

$$\frac{\mathrm{Mizuki}}{-0.5} \begin{pmatrix} \mathrm{DEmP} \\ -0.5 \end{pmatrix} \begin{pmatrix} \mathrm{DEmP} \\ -0.5 \end{pmatrix} \begin{pmatrix} \mathrm{DEmP} \\ \mathrm{Correction} \end{pmatrix} = 0.5 \end{pmatrix}$$

cosmological parameter estimation contd.

- bias in w is <1%(Mizuki) and ~10%
 (DEmP)
- for WFIRST/LSST SNe, sigma(w₀)~3-5% (Hounsell+2018) which may be affected by the magnification effect
- PS1 already got ~4% constraint on w which approaches to the systematic limit
- no error shrink (Mizuki), ~10% error shrink (DEmP)

	Mizuki		DEmP	
	w/o corr.	w/ corr.	w/o corr.	w/ corr.
$\Omega_{m,0}$	$0.288\substack{+0.105\\-0.086}$	$0.287\substack{+0.104\\-0.085}$	$0.292\substack{+0.102\\-0.082}$	$0.253\substack{+0.113\\-0.087}$
w	$-1.160\substack{+0.597\\-0.363}$	$-1.161\substack{+0.595\\-0.358}$	$-1.189\substack{+0.625\\-0.354}$	$-1.078\substack{+0.498\\-0.297}$

summary

- Deep and good quality imaging of HSC enables us to measure the foreground mass of the SNe.
- We measure foreground mass by different two methods: convergence mass reconstruction, and galaxy mass distribution.
- Although both methods are still noisy, we estimate the impact of the magnification on the cosmological parameter estimation.
- Need careful measurement of stellar mass in this regime.
- bias on w is <1%(Mizuki), and ~10%(DEmP) which is not a issue with the current data set where statistical error dominates.
- In future SNe dataset (LSST, WFIRST,...), where sigma(w)~a few%, the magnification will be important for unbiased estimate of the cosmological parameters.