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–Preliminary results of the power spectrum analysis of the CMASS NGC sample

• We assume flat                   and Planck’s  

• and measure

• These preliminary results, if confirmed, tell us that there is the potentiality of much 
improving the whole legacy of SDSS.

Analysis of the SDSS/BOSS data
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5 Analysis of the SDSS/BOSS data

[[[need plot of data and best fit, as we did for sims]]]

Having successfully tested our pipeline with various kind of simulations, we are ready to

apply the same pipeline to the data. When we analyze the power spectrum only, we obtain

the results shown in Fig. 10 and 12. Next, we apply the bispectrum to obtain the results

presented in Fig. 11 and 12. The best-fit values for all parameters are given in Table 3 and

68% confidence intervals for the cosmological parameters are given in Table 4.

Figure 10: Marginalized posterior distributions of the cosmological parameters obtained from fitting

the power spectrum of the CMASS sample NGC at ze↵ = 0.57 (left), and with the inclusion of Planck

sound horizon prior (right). The green lines represent the constraints from Planck 2018 while the

orange lines represent the constraints from WMAP 9 years.

ln(1010As) ⌦m h

CMASS NGC 2.68 ± 0.19 (+0.16
�0.22) 0.306 ± 0.014 (+0.012

�0.016) 0.741 ± 0.046 (+0.053
�0.039)

CMASS NGC with rd 2.81 ± 0.13 (+0.15
�0.12) 0.291 ± 0.011 (+0.011

�0.010) 0.696 ± 0.013 (+0.015
�0.010)

CMASS NGC with Bisp. 2.58 ± 0.16 (+0.18
�0.15) 0.309 ± 0.014 (+0.010

�0.017) 0.746 ± 0.040 (+0.048
�0.033)

CMASS NGC with Bisp. with rd 2.74 ± 0.14 (+0.15
�0.13) 0.291 ± 0.011 (+0.011

�0.010) 0.699 ± 0.013 (+0.012
�0.013)

Table 4: 68% confidence interval for the cosmological parameters from the individual analysis over

the CMASS NGC sample of the BOSS data up to kmax = 0.25h Mpc�1 for the power spectrum and

up to kmax = 0.1h Mpc�1 for the bispectrum monopole.

There are several features to discuss.
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–I am not a specialist of LSS data analysis, which is probably more delicate than CMB. 
Hopefully this talk makes the professionals excited enough that they jump on this.

Purpose of the talk



The end of a long journey



The Gathering Storm



–After the completion of the Planck satellite, no guaranteed very large improvement is 
expected from measurements of the primordial CMB 

–How to we continue to explore the beginning of the universe?

–LSS (directly or through CMB) will be the leading next probe. But where do we stand:

–If we are interested in the physics of the late time universe, such as dark energy or 
astrophysics, we are fine: a small jump is enough. 
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–After the completion of the Planck satellite, no guaranteed very large improvement is 
expected from measurements of the primordial CMB 

–How to we continue to explore the beginning of the universe?

–LSS (directly or through CMB) will be the leading next probe. But where do we stand:

–If we are interested in the physics of the late time universe, such as dark energy or 
astrophysics, we are fine: a small jump is enough. 

The Gathering Storm



–But the precision of the CMB and the heroes such as the WMAP and Planck teams, 
have allowed Cosmology to be part not just of astrophysics, but also of the so-called 
fundamental physics, such as quantum gravity, BSM, etc..

–If we want that to continue to belong also to this group, we need to make this happen:

–  For the primordial universe, a large jump is required

– We have to do it, either with sims or analytics. I will present an analytic approach.
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• The route if very hard and grievous.

• But think to the heroes of the CMB! (or of the very first LSS ones, as in fact at the 
beginning cosmology started with LSS, and LSS dominated CMB for a long time)

• In the middle 90’s, after the discovery of the CMB anisotropies by COBE, it 
aroused the promise that the CMB could make Cosmology a high-precision 
science

–that allowed us to firmly seat at the table of Fundamental Physics, not only of 
Astrophysics.

–Notwithstanding widespread skepticism, the promise was remarkably fulfilled

• Now, in order to continue this journey, we need make the same for LSS

–Will the promise be fulfilled?

–This is a challenge of the utmost importance

CMB vs LSS



The EFTofLSS applied to data:
the Complete Story



– Dark Matter & Baryons

– Galaxies

–  Redshift space

– IR-resummation

–Of course, none of this would have been possible without the precedent work of 
people like Bernardeau, Bond, Kaiser, Matsubara, MacDonald, Peebles, Refregier, 
Scheth, Scoccimarro, Seljak, Takada, White, and Zeldovich…

–But the EFTofLSS provides the first (and only) rigorous, convergent formalism to 
the true answer for 

–With it, we are not trying to answer only Astrophysics questions (for which the 
astro-models might be enough and we should keep using them, but the EFTofLSS 
has also to say on this). Our purpose is also to continue the journey that allowed us 
to make Fundamental Physics out of cosmology

• because of this, we have to be very rigorous, i.e. accurate. 

A long, long journey
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–The theory of dielectric materials is the theory of a massless spin-one object (light) 
interacting with composite objects (atoms)

–Very similarly, the EFTofLSS is the theory of massless spin-two object (gravity), 
interacting with composite objects (galaxies)

• so it is conceptually quite easy

The EFTofLSS and Dieletric Materials
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Dark Matter and Baryons



–In history of universe Dark Matter moves about                                 

–  it is an effective fluid-like system with mean free path ~

– it interacts with gravity so matter and momentum are conserved

• Skipping many subtleties, the resulting equations are equivalent to fluid-like equations

–short distance physics appears as a non trivial stress tensor for the long-distance fluid

The Effective ~Fluid

with Baumann, Nicolis and Zaldarriaga JCAP 2012 
with Carrasco and Hertzberg JHEP 2012

with Porto and Zaldarriaga JCAP 2014 
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• For dealing with long dist., expectation value over short modes (integrate them out)

• At long-wavelengths, the only fluctuating fields have small fluctuations: Taylor expand

• We obtain equations containing only long-modes

• How many terms to keep? 

–each term contributes as an extra factor of  

Dealing with the Effective Stress Tensor

r
2�l = H

2 �⇢l

⇢
(1)

@t⇢l + H⇢l + @i

�
⇢lv

i
l

�
= 0 (2)

v̇
i
l + Hv

i
l + v

j
l @jv

i
l =

1

⇢
@j⌧ij (3)

h⌧ijilong ⇠ �ij

⇥
p0 + cs �⇢long +O

�
@, @iv

i
long, �

2
�⇤

(4)

⌧ij ⇠ �ij ⇢
2
short

�
v

2
short + �short

�
(5)

S =

Z
d

4
x
p
�g

⇥
(@µ�)2 + V (�)

⇤
(6)

S =

Z
d

4
x
p
�g

⇥
(@µ⇡)2 +

�
⇡̇

4 + ⇡̇
3(@µ⇡)2

�⇤
(7)

k (8)

P!(k) ⇠
1

kNL
3

✓
k

kNL

◆2.5

(9)

cs (10)

` ⇠ 1000 (11)

k
2
P (k) (12)

@
2

H2
�(~x, t) = �(~x, t) + @i@jQij (�(~x, t), . . .) + . . . (13)

Qij(~x, t) = l
2
0(t) �ij + l

2
1(t) @i@j�(~x, t) + . . . (14)

k s ⌧ 1 (15)

cs (16)

P11, cs
= cs

✓
k

kNL

◆2

P11

cs = �

✓
⇤

kNL

◆
+ cs, finite (17)

P1�loop + P11, cs
= cs, finite

✓
k

kNL

◆2

P11 + c
finite
1

✓
k

kNL

◆3

P11 + subleading in
k

kNL
(18)

P1�loop = c
⇤
1

✓
⇤

kNL

◆ ✓
k

kNL

◆2

P11 + c
finite
1

✓
k

kNL

◆3

P11 + subleading in
k

kNL
(19)

Number of modes ⇠

✓
kmax

kmin

◆3

(20)

⇠
⇡̇

3

⇤2
(21)

⇣
��(~x, t) ! ��(~x, t)� �̇(t) �t(~x, t)

⌘
(22)

�̇
2
/H

4 (23)

h

✓
�T

T

◆2

i ⇠
H

4

ḢM
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• Order by order improvement

• Theory error estimated

• k-reach pushed to                                

• Huge gain wrt former theories

EFT of Large Scale Structures at Two Loops

with Carrasco, Foreman and Green JCAP1407
with Zaldarriaga JCAP1502

with Foreman and Perrier  1507
see also Baldauf, Shaan, Mercolli and Zaldarriaga 1507, 1507

Estimated Theory
error
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Figure 7: Comparisons between 1-loop EFT (solid red), 2-loop EFT (solid blue) and SPT at tree

level (dotted green), one loop (dashed red), and two loops (dashed blue). The left plot shows the results

normalized to non-linear data (solid black) while dotted and dashed black lines are the 2-� limits associated

with 1 and 2 percent agreement (1-�) with the non-linear data. The red and blue bands show the 2-�
errors on the 1 and 2 loop EFT parameters respectively. The right plot is the same information without

the normalization to the non-linear data, and with the low-k region omitted for readability.
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• Extended to

• baryons

• neutrinos

• dark energy 

• non-gaussianities

EFT of Large-Scale Structure

with Lewandowsky and Maleknejad JCAP 1705

with Zaldarriaga 1707

with Lewandowski and Perko JCAP1502

with Angulo, Fasiello, Vlah 1503
Assassi et al 1506, Assassi et al 1509, 
with Lewandowsky et al 1512



Galaxy Statistics
senatore 1406
with Lewandowsky et al 1512
with Perko, et al. 1610



• On bias, there was a long history before, summarized by                             and this 
builds up on that. However,                     provided the first complete parametrization.

• The nature of Galaxies is very complicated. If we change the electron mass, the number 
density of galaxies changes (galaxies are UV sensitive objects).

• So practically impossible to predict 

• However, if we are interested only on long-wavelength properties of                , we 
realize that the only objects carrying non trivial space dependence are the fluctuating 
fields, which, at long-wavelengths, are small         we can Taylor expand

Galaxies in the EFTofLSS
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• Therefore

• all terms allowed by symmetries are present

• all physical effects are included

• extended to non-gaussianities and baryons 

Galaxies in the EFTofLSS
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Redshift space
with Zaldarriaga 1409

with Lewandowsky et al 1512



• Redshift space is a field-dependent local change of coordinates:

• Need for counterterms (expectation value on short modes)

• Baryons, Primordial NG included

• Now, all pieces ingredients are prepared.

Counterterms with Zaldarriaga 1409
with Lewandowsky et al 1512
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Mass conservation relates the density in real space ⇢(~x) and in redshift space ⇢r(~xr):
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We now assume we can Taylor expand the exponential of the velocity field to obtain an
expression that is more amenable to perturbation theory (this is where the Eulerian approach
that we describe here, and the Lagrangian approach that we mentioned earlier di↵er, but
once the Eulerian-space has been IR-resummed, they are equivalent). For the purpose of this
paper, we will show formulas that are valid only up to one loop. We therefore can Taylor
expand up to cubic order, to obtain
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The product of fields at the same location is highly UV sensitive. As usual, we need to
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ẑ
j
ẑ
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fields at same location: add counterterms

The perturbative solution allows us to compute correlation functions of long-wavelength

fields that depend only on a finite number of unknown coe�cients. Then, long-wavelength

fluctuations are described as biased tracers of the long-wavelength fluctuations. Schematically,

if �g is the overdensity of galaxies, we have [9]
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This means that correlation functions of galaxies can be perturbatively computed as linear

combination of more-complicated correlation functions of density and velocity fields, weighted

by unknown coe�cients that are named ‘biases’ (we will use the name ‘counterterms’ or ‘EFT

parameters’ also for them). Again, at a given order n in the perturbation expansion, only a

finite number of biases should be included.

Finally, the overdensity of galaxies in redshfit space is given by a formula that, roughly,

reads [10]
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where [. . .]~k means that we take the Fourier transform at momentum ~k of the quantity inside

the brackets, and ẑ is the direction of the line of sight. Again, there is only a finite number

of unknown numerical coe�cients that need to be used for the calculation at a given order n.

In summary, schemmatically, correlation functions of densities in redshift space are ob-

tained as linear combination of correlation functions of quantities in configuration space,

which, in turn, are obtained as correlation functions of long-wavelength fields satisfying (1).

These correlation functions are computed in an perturbative expansion in powers of �
(1)

⌧ 1,

or, equivalently, in powers of k/kNL, with k being the wavenumber of interest, and kNL being

the wavenumber associated to the non-linear scale, i .e. where k
3
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' 1. For a

given order n used in perturbation theory, only a finite, albeit potentially large, number of

free coe�cients are used.

Therefore, the EFTofLSS is a perturbation theory for the LSS. While there is a plethora

of perturbative approaches to LSS, dating back since the time of Zeldovich [11], it should

be stressed that there can be only one correct perturbative approach. By this we mean that

there is only one correct set of equations that describe the long-wavelength behavior of the

universe. Others can be correct only either if they are just a change of variables of the

same equations, and so essentially the same equations, or if they solve the same equations

expanding in di↵erent subsets of parameters. The novelty of the EFTofLSS with respect to
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IR-Resummation
with Zaldarriaga 1404



• As has been know for some time (I knew it from Scoccimarro), perturbation theory is 
extremely slow to converge due to the effect of IR-displacements. They affect the 
feature in real space named BAO peak 

• Observers try to address this in several ways (see for example BAO reconstruction).

• The first, and in a sense unique, consistent way to resum the IR-displacements was 
obtained in                                 

• One can do several approximation to this formula, due to a trick developed in                                          
such that as we go to higher orders in perturbations, the exact result is kept.

• The exact IR-resummation has been applied to redshift space in

IR-resummation and the BAO peak

with Zaldarriaga 1404

with Zaldarriaga 1404

with Lewandowski et al 1512
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• It works very well

• Similarly well in redshift space

IR-resummation and the BAO peak
with Zaldarriaga 1404

with Trevisan JCAP1805

with Lewandowski et al 1512



Galaxies in Redshift Space
with Perko, Jennings, Wechsler  1610



• Correlations of Galaxy density in Redshfit space

• In terms of Correlations of Galaxy density and velocity in real space + EFT parameters 

• In terms of Correlation of dark matter and tidal tensors, etc. + EFT parameters

• Dark matter correlations from fluid equations + EFT parameters

•              IR-resummation

Pipeline to Observables



Relevant equations



• Halo-Halo power spectrum in redshift space

• where the counterterm contribution is given

Galaxies in Redshift space in the EFTofLSS

All codes in 
EFTofLSS public repository



• Halo-Halo power spectrum in redshift space

• where the counterterm contribution is given

Galaxies in Redshift space in the EFTofLSS

All codes in 
EFTofLSS public repository



• and the kernels in redshift space are just functions of the kernels for density and 
velocity in real space

• which depend on 4 bias coefficients, using the physically-natural base of descendents

• So, summary: 

• 4 bias coefficients+ 3 non-stochastic counterterms+ 3 stochastic counterterm

• =10 `bias’ parameters or `EFT’ parameters

Galaxies in Redshift space in the EFTofLSS

Senatore 1406



Analysis of the BOSS/SDSS data
Guido d’Amico,  Jerome Gleyzes, Nickolas Kockron, Dida Markovic, Leonardo Senatore, Matias Zaldarriaga, Pierre Zhang, 

Florian Beutler, Hector Gill-Marin   
in completion



• We are now ready to analyze the data.

• We have 10 `EFT parameters’+ 3 cosmological parameters

• dependence on 10 `EFT parameters’ is analytic

• dependence on cosmological parameters is not. So, we run a grid for `3’ 
cosmological parameters (easy improvements are possible)

• Then we run an MCMC with 13 parameters, giving ample physically-motivated priors 
to the coefficients. At every MCMC step, we re-evaluate the model.

• We need to know our            : we determine this, as well as the reach of the theory, 
comparing our results with simulations, using all the simulations that SDSS uses.

• on sims, 2 bias coefficients seem not to play a role (2 stoch. biases): dropped for the 
moment        MCMC with 11 parameters

Analysis of the BOSS/SDSS data
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• The dependence on the bias coefficients is quasi-linear: lots of tricks to do:

• For 5 biases, linear dependence:

• Since we do not care of their numerical value, we can exactly marginalize over them: 

• We obtain a likelihood function only of 6 parameters (but slower to evaluate).

• so we use both likelihoods and compare

Exact Marginalization
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• Contrary to former astro-inspired models, the EFTofLSS is arbitrary accurate at low      , 
but when it fails, it fails big time.

• This creates difficulties in applying the survey window-function. It is also waste of time

• Normally

• Since we have difficulties in doing FFTlog due to bad UV-behavior of EFT, we do 
directly in Fourier space:

• computationally doable: one FFTlog for each

• Substitute in Likelihood and define the new masked Covariance (once forever):

• So, we can evaluate the full model at each MCMC step. 
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Power Spectrum in Simulations



• Challenge boxes are good-quality N-body simulations of BOSS volume, populated with 
4 HOD’s, 4-times SDSS volume

• Fit three multipoles

• We measure 

• Theory systematic error (bias): 

• unmeasurably small

• assuming simulations 

• Important test passed

• Errors decrease like 

• same results with non-marg likl.
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Figure 2: Marginalized posterior distributions of the cosmological parameters obtained from fitting

the power spectrum of four Challenge boxes and their average (left), and with the inclusion of

Planck sound horizon prior (right). For each cosmological parameters, the expectation value is given

together with the statistical error and the theory-systematic error (from top to bottom in each

subplot). All numbers are given with a numerical uncertainties of ±1 on the last digit. The vertical

lines represents the fiducial cosmology of the simulation.

in the next subsection on the physical origin of this.

We call �sys an estimate of the theoretical error associated with the higher-order terms

in the EFTofLSS prediction that we have not computed yet and so are not included in the

model we fit to the data. Usually �sys is called a systematic bias, but we do not use this

nomenclature in order to avoid confusion with the EFTofLSS parameters or with other forms

of systematic errors. The challenge boxes are highly correlated, as their initial conditions

are the same (since they are extracted from the same dark-matter simulation, the Big Mul-

tiDark). Thus, �sys is measured by computing the distance between the true value and the

68% confidence region of the average over the four boxes of the distribution of the posteriors

of each box for a given parameter. In particular, �sys is taken to be zero when the true value

is within the 68% confidence region. For Patchy, on the other hand, the initial conditions

are taken to be di↵erent so that each Patchy mock is independent. We therefore measure the

systematic error by computing the distance between the true value and the 68% confidence

region of the distribution obtained by multiplying the posterior distributions of each box.

In other words, for each cosmological parameter, we take the product of the 30 curves of

Fig. 3 17 and compute the distance of the 68% confidence region to the true value. Due to

these degradations would allow a significant measurement of the parameters.
17This is not a completely well-justified procedure, as it would be better to multiply the likelihoods directly,
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Figure 4: 2D posterior distributions of the cosmological parameters ln(1010As), ⌦m, and h, and the

EFT parameters b1, b2 and b4, obtained from fitting the power spectrum up to kmax = 0.25h Mpc�1

of the challenge boxes (left) and of four of the Patchy lightcones NGC (right). We can see that we

can measure all the cosmological parameters as well as the EFT parameters. All degeneracies are

broken, though some to a di↵erent extent than others. We see that the four HOD models on the

left di↵er mainly for their value of b1. The results for the cosmological parameters, which should be

equal for all of them, appear to be remarkably consistent.

simulations and the HOD modeling are exact, i.e. they represent the exact distribution of a

population of galaxies generated according to some physical mechanism. Any deviation from

the exact representation of the physical model (for example if the trajectory of the particles

had a numerical error) would induce a numerical-systematics, that we here assume in this pa-

per to be negligible 20. It is a well-recognized limitation that the HOD models do not actually

simulate the formation of galaxies from first principles, but rather ‘model’ them according

to some rule guided by a mixture of physical processes and data. We point out that, from

the EFTofLSS point of view, it is absolutely not important that the HOD model correctly

represents a population of galaxies that actually exists in the universe. In fact, as long as the

galaxy-formation physics is modeled by the HOD with a process that satisfies the principle

of general relativity, i.e. it is controlled by locally observable quantities, then the EFTofLSS

is expected be able to describe the distribution of this population with arbitrary accuracy. Of

course, for a given model, the non-linearities induced by the higher order biases can be larger

than in another models. In this case, to reach a given accuracy, one might need to include

higher-order terms in the EFTofLSS. For example, in [46, 47], higher-order derivative terms

were included in order to reproduce to a given accuracy the distribution of highly-biased trac-

20Of course, due to modeling issues, it is unlikely that this assumption is entirely true.

25

Challenge Boxes

SDSS Challenges kmax = 0.25

Figure 2: [[to be redone with crosses and new files]] Contour plots of the partially-

marginalized Likelihood of (39) at kmax = 0.25h Mpc�1 for the Challenge boxes. We can see that

we can measure all the cosmological parameters as well as the bias coe�cients. All degeneracies are

broken, though some to a di↵erent extent than others. We see that the four HOD models di↵erer

mainly for their value of b1. The results for the cosmological parameters, which should be equal for

all of them, appears remarkably consistent.

15

-We get the right cosmology
-We measure all the biases
-All degeneracies are broken
-This allows us to help infer 
the galaxy formation mechanism
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Figure 1: Size of absolute value of various contributions to the monopole of the one-loop power

spectrum of eq. (5) evaluated at the fiducial cosmology of the challenge boxes (left) and of the

Patchy mocks (right), and by fitting the EFT parameters up to kmax = 0.25h Mpc�1. We also plot,

in dashed, the size of the statistical error bars.

data, we use a covariance rescaled by the ratio of the nominal volumes of the challenge boxes

and the size of Patchy mocks. The resulting covariance is still almost a factor of 4 smaller

than the one of SDSS or Patchy, as the e↵ective volume of the Patchy lightcones is almost a

factor of 4 times smaller than their nominal volume, and is indeed similar to the SDSS one 15.

We will discuss further the k-range accessible by the theory at this order in the following,

when concluding our systematic analysis.

Second, representative contributions are also plotted in Fig. 1. We first observe that

keeping only one galaxy bias bi to its best-fit value (⇠ O(2)) while setting all other EFT

parameters to zero gives the typical size of the contributions entering in the one-loop. In the

case of Patchy, it is clear that cancellations among the various individual contributions are

at play, making the full loop about ten times smaller than each piece taken separately. It is

hard to judge if this is a problem, as cancellations between various diagrams are expected

at some level, and indeed the degeneracy between the two diagrams is quite evident by eye,

and the only physically well-defined quantity is the total one-loop contribution. Furthermore

this cancellation is almost absent in the case of challenge boxes. The interpretation that this

15Analyzing the challenge data in this way corresponds to analyzing a power spectrum which is much
smoother than the true one that would be measured by a typical realization of the power spectrum with the
rescaled covariance. Therefore, the �

2 of the best fit will be unreliable (it will be too good). However, the
error bars are trustable, and the analysis of the full box with the rescaled covariance gives error bars that
corresponds to the average of the error bars obtained from analyzing the various subboxes that would have the
rescaled covariance as their true covariance. Later on, when we quote the �

2 of the best fit to the Challenge
boxes, we will quote the number associated with the fit to the power spectrum measured from a quarter of
the volume, which is the correct procedure. We have also checked that the statistical and systematic errors
we obtain from fitting a quarter of the volume are similar to the one obtained by fitting the whole volume
with the rescaled covariance.
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• Best fit model:

• Theoretical Consistency

• parameters 

• exc. is shot noise

•

Theoretical Consistency: Challenge Boxes

Figure 9: Best-fit power spectrum on measurements from challenge box A (left) and patchy Box 5

(right) at kmax = 0.25h Mpc�1 and residuals. The error bars represent the diagonal terms of the

covariance.

the best-fit results from the fit of the power spectrum up to kmax = 0.25h Mpc�1 and together

with the bispectrum up to kmax = 0.1h Mpc�1, from both the simulations and the CMASS

sample 16. All min �
2 per degrees of freedom (min �

2
/d.o.f.) gives quite a good p-value,

attesting for the goodness of the fit. The values of the EFT parameters are all of order of

the linear bias b1 (⇠ O(2)), all lying well within the chosen priors for this analysis (±20),

with the only exception of cr,1, which is order 10. For the stochastic coe�cients, we ran with

tighter priors (±2), and found them to be smaller than the other biases by one or two orders

of magnitude, as expected from the subtraction of the shot-noise from the data. [MCMC

for covariance is running.]

The relative statistical error on the cosmological parameters on BOSS-like Patchy mocks

is about 16%, 7% and 6% for As, ⌦m and h respectively at kmax = 0.3h Mpc�1. The inclusion

of the bispectrum monopole reduces the error bars by another 15%. Upon inclusion of the

Planck’s prior on the sound horizon, the error bars are decreased by about 40%, 20% and 60%

for As, ⌦m and h respectively. No significant theory-systematics is detected.

We also observe how the statistical error decreases with kmax. Ideally, the errors should

decrease as k
�3/2
max , but this is a↵ected by the fact that some parameters are dominated by

the information in the BAO peak, which is already well measured at low kmax, as well as by

the fact that there are degeneracies with some cosmological parameters. We take the power-

spectrum-only analysis for definiteness. For As, we find that the error decreases roughly

as k
�1.1
max , for ⌦m as k

�0.25
max , and for h as k

�0.8
max [[[check number]]].

It is worth to finally notice that the EFTofLSS at one-loop order is able to fit accurately,

without introducing sizeable systematic error, the power spectrum measured from the rescaled

16We remind the reader that, for the challenge boxes, we quote the results from the fit of measurements
from a quarter of a box.
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tree-level

1-loop

data error

ln(1010
As) ⌦m h

�stat �sys �stat �sys �stat �sys

Challenge 0.10 0.00 0.012 0.000 0.029 0.000

Challenge with rd 0.06 0.00 0.008 0.000 0.009 0.000

Challenge Full 0.08 0.00 0.009 0.000 0.024 0.000

Challenge Full with rd 0.02 0.04 0.003 0.000 0.003 0.000

Patchy NGC 0.18 0.00 0.019 0.007 0.043 0.018

Patchy NGC with rd 0.12 0.07 0.016 0.000 0.018 0.000

Patchy NGC with Bisp. 0.15 0.00 0.016 0.006 0.032 0.022

Patchy NGC with Bisp. with rd 0.11 0.09 0.015 0.000 0.016 0.000

Table 2: Summary of individual Analysis over Simulations up to kmax = 0.25h Mpc�1 for the power

spectrum and up to kmax = 0.1h Mpc�1 for the bispectrum monopole. See Sec. 4.2 for a description

of how we measure the systematic error, and the special discussion we have about Patchy mocks

and also that the convergence criterion of the MCMC for the Challenge Full boxes is less strict.

ln(1010
As) ⌦m h min �

2
/d.o.f. p-value

Challenge A 3.12 0.298 0.661 42/(72-11) 0.97

Patchy NGC 2 3.37 0.304 0.623 105/(111-11) 0.35

Patchy NGC 2 + Bisp. 3.27 0.306 0.625 132/(111+34-12) 0.51

CMASS NGC 2.70 0.308 0.742 106/(111-11) 0.32

CMASS NGC + Bisp. 2.68 0.309 0.747 133/(111+34-12) 0.48

b1 b2 b3 b4 cct cr,1 cr,2 10 ⇥ c✏,1 10 ⇥ c✏,4

Challenge A 2.1 -2.8 -1.5 4.4 -1.4 -13.9 -0.5 -0.3 -

Patchy NGC 2 1.7 -1.3 -4.5 2.3 -4.9 -8.0 -3.0 0.8 -

Patchy NGC 2 + Bisp. 1.9 0.2 -4.9 1.4 -2.9 -10.0 -2.4 0.0 0.3

CMASS NGC 2.3 3.1 3.2 -1.0 0.0 -9.2 0.5 0.0 -

CMASS NGC + Bisp. 2.3 -2.8 5.3 4.3 1.0 -12.2 0.7 0.0 0.9

Table 3: Best-fit values and goodness of fit of the power spectrum up to kmax = 0.25h Mpc�1 and of

the bispectrum monopole up to kmax = 0.1h Mpc�1, with km = 0.7h Mpc�1 and n̄g = 3·10�4
h Mpc�1.

the fact that there are degeneracies with some cosmological and EFT parameters. Taking for

definitenss the power-spectrum-only analysis of the Challenge boxes, we find that the error

decreases roughly as k
�1.4
max , k

�0.4
max and k

�0.8
max , for As, ⌦m and h, respectively (if we instead use

the Patchy simulations, we find the similar scalings of k
�1.2
max , k

�0.5
max and k

�0.8
max , for As, ⌦m and h

respectively) 27.

27In order to check, at least partially, the correctness of our pipeline, we have performed a
Fisher-matrix study of the expected error bars on the parameters around the best fit point
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• Best fit model:
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• good p-value 

• nothing major
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Figure 9: Best-fit power spectrum on measurements from challenge box A (left) and Patchy Box 2

(right), as a representative box, at kmax = 0.25h Mpc�1 and residuals. The error bars represent

the diagonal terms of the covariance. The �
2
/d.o.f is respectively 0.69 and 1.05. The points at

k . 0.03h Mpc�1 in the plot for the Patchy box are significantly correlated due to binning e↵ects.

have a spacing in k smaller than the fundamental mode of the box, and are

therefore highly correlated.

The values of the EFT parameters are all of order of the linear bias b1 (⇠ O(2)), all lying

well within the chosen priors for this analysis (±20), with the only exception of cr,1, which is

order 10 26. For the stochastic coe�cient, we ran with tighter priors (±2), and found them

to be smaller than the other biases by one or two orders of magnitude, as expected from

the subtraction of the shot-noise from the data. We provide in App. G the correlation of all

parameters as well as their 2D posterior distributions from the fit of the power spectrum of

Challenge A.

The relative statistical error on the cosmological parameters on BOSS-like Patchy mocks is

about 18%, 6% and 6% for As, ⌦m and h respectively at kmax = 0.25h Mpc�1. The inclusion

of the bispectrum monopole reduces the error bars by about 17%. Upon inclusion of the

Planck prior on the sound horizon, the error bars are decreased roughly by about 34%, 15%

and 58% for As, ⌦m and h respectively (the reduction in the error bars is a bit larger if we

consider the Challenge boxes as well). With the marginal exception of kmax = 0.3h Mpc�1,

which we will not use anyway in the observational data, we have argued that the systematic

error is always comfortably smaller than the statistical errors we will find in the observational

data ( 1/4 · �stat without the Planck sound horizon prior,  1/3 · �stat with that prior), and

so negligibly small.

We also observe how the statistical error decreases with kmax. Ideally, the errors should

decrease as k
�3/2
max , but this is a↵ected by the fact that some parameters are dominated by

the information in the BAO peak, which is already well measured at low kmax, as well as by

26We have checked that by enlarging the priors for all the EFT-parameters by a factor of 10, our results do
not change significantly.
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of how we measure the systematic error, and the special discussion we have about Patchy mocks

and also that the convergence criterion of the MCMC for the Challenge Full boxes is less strict.
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Table 3: Best-fit values and goodness of fit of the power spectrum up to kmax = 0.25h Mpc�1 and of

the bispectrum monopole up to kmax = 0.1h Mpc�1, with km = 0.7h Mpc�1 and n̄g = 3·10�4
h Mpc�1.

the fact that there are degeneracies with some cosmological and EFT parameters. Taking for

definitenss the power-spectrum-only analysis of the Challenge boxes, we find that the error

decreases roughly as k
�1.4
max , k

�0.4
max and k

�0.8
max , for As, ⌦m and h, respectively (if we instead use

the Patchy simulations, we find the similar scalings of k
�1.2
max , k

�0.5
max and k

�0.8
max , for As, ⌦m and h

respectively) 27.

27In order to check, at least partially, the correctness of our pipeline, we have performed a
Fisher-matrix study of the expected error bars on the parameters around the best fit point
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• We measure                                , without any significant prior from CMB. How is this 
possible?

• Notice that we analyze the full spectrum, no splitting osc.+smooth. But, in order to 
understand, we can split the smooth and the oscillating signal. 

• BAO-scale (sound horizon) and relative amplitude 

• Linear monopole and quadrupole

• So, this allows us to solve for all the four variables:

• In particular

• Additional information comes further from exaducaple,                                                    
non-linear terms and overall shape, which depends on 
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Challenge boxes becomes about �stat/3, and for h about �stat/8. These represent magnitudes

that can be marginally detected. One should now keep in mind that we ultimately wish to

ensure that the systematic error is small compared to the statistical error of the data, not of

the Challenge boxes. The statistical error for Challenge boxes is significantly smaller than

the one in Patchy, which will turn out to be comparable to the one of the data, by almost a

factor of 2. This reflects that the covariance matrices are about a factor of 4 di↵erent, in turns

associated with the factor of 4 in di↵erence between the nominal and the e↵ective volume of

the Patchy mocks. This suggests that even for the most extreme case that we consider here,

kmax = 0.3h Mpc�1, the theory-systematic error should to be negligibly small. Indeed, for

the Patchy boxes, we find very marginal (i.e. �syst  0.1�stat) theory systematic error even

for kmax = 0.3h Mpc�1.
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Figure 4: 2D posterior distributions of the cosmological parameters ln(1010As), ⌦m, and h, and the

counterterms b1, b2 and b4, obtained from fitting the power spectrum up to kmax = 0.25h Mpc�1 of

the challenge boxes (left) and the patchy lightcones NGC (right). We can see that we can measure

all the cosmological parameters as well as the bias coe�cients. All degeneracies are broken, though

some to a di↵erent extent than others. We see that the four HOD models on the left di↵er mainly

for their value of b1. The results for the cosmological parameters, which should be equal for all of

them, appear remarkably consistent.

Before moving on, we would like to make the following comment about the theory-

systematic error as extracted from simulations. One can take the point of view that the

simulations and the HOD modeling are exact, i.e. they represent the exact distribution of a

population of galaxies generated according to some physical mechanism. Any deviation from

the exact representation of the physical model (for example if the trajectory of the particles

had a numerical error) would induce a numerical-systematics, that we here assume here to be
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Figure 4: 2D posterior distributions of the cosmological parameters ln(1010As), ⌦m, and h, and the

EFT parameters b1, b2 and b4, obtained from fitting the power spectrum up to kmax = 0.25h Mpc�1

of the challenge boxes (left) and of four of the Patchy lightcones NGC (right). We can see that we

can measure all the cosmological parameters as well as the EFT parameters. All degeneracies are

broken, though some to a di↵erent extent than others. We see that the four HOD models on the

left di↵er mainly for their value of b1. The results for the cosmological parameters, which should be

equal for all of them, appear to be remarkably consistent.

simulations and the HOD modeling are exact, i.e. they represent the exact distribution of a

population of galaxies generated according to some physical mechanism. Any deviation from

the exact representation of the physical model (for example if the trajectory of the particles

had a numerical error) would induce a numerical-systematics, that we here assume in this pa-

per to be negligible 20. It is a well-recognized limitation that the HOD models do not actually

simulate the formation of galaxies from first principles, but rather ‘model’ them according

to some rule guided by a mixture of physical processes and data. We point out that, from

the EFTofLSS point of view, it is absolutely not important that the HOD model correctly

represents a population of galaxies that actually exists in the universe. In fact, as long as the

galaxy-formation physics is modeled by the HOD with a process that satisfies the principle

of general relativity, i.e. it is controlled by locally observable quantities, then the EFTofLSS

is expected be able to describe the distribution of this population with arbitrary accuracy. Of

course, for a given model, the non-linearities induced by the higher order biases can be larger

than in another models. In this case, to reach a given accuracy, one might need to include

higher-order terms in the EFTofLSS. For example, in [46, 47], higher-order derivative terms

were included in order to reproduce to a given accuracy the distribution of highly-biased trac-

20Of course, due to modeling issues, it is unlikely that this assumption is entirely true.
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Figure 7: Marginalized posterior distributions of the cosmological parameters obtained from fitting

the power spectrum and the bispectrum monopole of 30 Patchy lightcones NGC (left, thin lines)

and their average (left, thick lines), and with the inclusion of Planck sound horizon prior (right).

For each cosmological parameters, the expectation value is given together with the statistical error

and the theory-systematic error (from top to bottom in each subplot).

average 17% (respectively, 14% for ln(1010As), 13% for ⌦m, 23% for h). The improvement on

the statistical error is smaller if we included the Planck sound horizon prior: on average 7%

(respectively, 4% for ln(1010As), 6% for ⌦m, 11% for h). We find no significant increase in

the theory systematic error.

Finally, from Fig. 8, we see that the inclusion of the bispectrum allows a much improved

determination of the bias parameters. As we discussed above, this might have important

consequences for our understanding of the galaxy formation mechanisms.

4.6 Summary of tests on simulations

We summarize the results of our tests on numerical simulations in Table 2. We find that we

can determine As, ⌦m and h from the power spectrum data, with no significant role played

by other observations. We also can measure the EFT parameters, allowing, in principle, the

learn about the galaxy formation mechanism.

As representative boxes, in Fig. 9 we plot the best-fit model against the power spectrum

measured from a quarter of the volume of challenge box A, and, on the right, to Box 2

of Patchy. We give in Table 3 the best-fit results from the fit of the power spectrum up

to kmax = 0.25h Mpc�1 and together with the bispectrum up to kmax = 0.1h Mpc�1, from

32

⌦m, h (1)

(2)

ln(1010As) ⌦m h
�stat �sys �stat �sys �stat �sys

Challenge 0.10 0.00 0.012 0.000 0.029 0.000
Challenge with rd 0.06 0.00 0.008 0.000 0.009 0.000
Patchy NGC 0.18 0.00 0.019 0.007 0.043 0.018
Patchy NGC with rd 0.12 0.07 0.016 0.000 0.018 0.000
Patchy NGC with Bisp. 0.15 0.00 0.016 0.006 0.032 0.022
Patchy NGC with Bisp. with rd 0.11 0.09 0.015 0.000 0.016 0.000

Table 1: Summary of individual Analysis over Simulations up to kmax = 0.25hMpc�1 for the power
spectrum and up to kmax = 0.1hMpc�1 for the bispectrum monopole. See Sec. ?? for a description of
how we measure the systematic error, and the special discussion we have about Patchy mocks and also
that the convergence criterion of the MCMC for the Challenge Full boxes is less strict.

• Low-quality model-simulations

• with good redshift modeling

• good window function

• SDSS volume

• Error bars similar to SDSS

• Systematic error computed 
combining 30 boxes

–very small on 

• entirely due to quality of 
Patchy mocks

• Test passed.
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Patchy NGC with Bisp. 0.15 0.00 0.016 0.006 0.032 0.022
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Table 1: Summary of individual Analysis over Simulations up to kmax = 0.25hMpc�1 for the power
spectrum and up to kmax = 0.1hMpc�1 for the bispectrum monopole. See Sec. ?? for a description of
how we measure the systematic error, and the special discussion we have about Patchy mocks and also
that the convergence criterion of the MCMC for the Challenge Full boxes is less strict.

Figure 15: Marginalized posterior distributions of the cosmological parameters obtained from fitting

the power spectrum of the same Patchy mocks that we analyzed in Fig. 3 (top), but without the

inclusion of the window function (bottom). For each cosmological parameters, the expectation value

is given together with the statistical error and the theory-systematic error (from top to bottom in

each subplot). All numbers are given with a numerical uncertainties of ±1 on the last digit. The

vertical lines represent the fiducial cosmology of the simulation.

F Sound horizon at decoupling

The sound horizon rd at decoupling at epoch zd reads:

rd =

Z 1

zd

cs(z)

H(z)
dz, (73)

where cs is the sound speed in the primordial photon-baryon plasma given by:

c
2
s(z) =

c
2

3


1 +

3

4

⇢b(z)

⇢�(z)

��1

, (74)

where ⇢b and ⇢� are the enery density of baryons and radiation respectively. The integral

in (73) can be evaluated exactly as:

rd =
2c

H0

p
3R⌦m

log

2

64

p
1 + zd + R +

q
(1 + zd)R

⌦rad
⌦m

+ R

p
1 + zd

⇣
1 +

q
R

⌦rad
⌦m

⌘

3

75 , (75)

where R = 3
4
⌦b
⌦�

, the normalized radiation density today is ⌦rad =
⇥
1 + Nur

7
8(

4
11)

4/3
⇤
⌦�h

2 with

Nur the number of ultra-relativistic species and ⌦�h
2 = 2.47282 · 10�5, H0 is, as usual, the

Hubble constant at present time, and c is the speed of light.
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Pachy Mocks

Figure 7: Marginalized posterior distributions of the cosmological parameters obtained from fitting

the power spectrum and the bispectrum monopole of 30 Patchy lightcones NGC (left, thin lines)

and their average (left, thick lines), and with the inclusion of Planck sound horizon prior (right).

For each cosmological parameters, the expectation value is given together with the statistical error

and the theory-systematic error (from top to bottom in each subplot).

average 17% (respectively, 14% for ln(1010As), 13% for ⌦m, 23% for h). The improvement on

the statistical error is smaller if we included the Planck sound horizon prior: on average 7%

(respectively, 4% for ln(1010As), 6% for ⌦m, 11% for h). We find no significant increase in

the theory systematic error.

Finally, from Fig. 8, we see that the inclusion of the bispectrum allows a much improved

determination of the bias parameters. As we discussed above, this might have important

consequences for our understanding of the galaxy formation mechanisms.

4.6 Summary of tests on simulations

We summarize the results of our tests on numerical simulations in Table 2. We find that we

can determine As, ⌦m and h from the power spectrum data, with no significant role played

by other observations. We also can measure the EFT parameters, allowing, in principle, the

learn about the galaxy formation mechanism.

As representative boxes, in Fig. 9 we plot the best-fit model against the power spectrum

measured from a quarter of the volume of challenge box A, and, on the right, to Box 2

of Patchy. We give in Table 3 the best-fit results from the fit of the power spectrum up

to kmax = 0.25h Mpc�1 and together with the bispectrum up to kmax = 0.1h Mpc�1, from

32

⌦m, h (1)

(2)

ln(1010As) ⌦m h
�stat �sys �stat �sys �stat �sys

Challenge 0.10 0.00 0.012 0.000 0.029 0.000
Challenge with rd 0.06 0.00 0.008 0.000 0.009 0.000
Patchy NGC 0.18 0.00 0.019 0.007 0.043 0.018
Patchy NGC with rd 0.12 0.07 0.016 0.000 0.018 0.000
Patchy NGC with Bisp. 0.15 0.00 0.016 0.006 0.032 0.022
Patchy NGC with Bisp. with rd 0.11 0.09 0.015 0.000 0.016 0.000

Table 1: Summary of individual Analysis over Simulations up to kmax = 0.25hMpc�1 for the power
spectrum and up to kmax = 0.1hMpc�1 for the bispectrum monopole. See Sec. ?? for a description of
how we measure the systematic error, and the special discussion we have about Patchy mocks and also
that the convergence criterion of the MCMC for the Challenge Full boxes is less strict.

• Low-quality model-simulations

• with good redshift modeling

• good window function

• SDSS volume

• Error bars similar to SDSS

• Systematic error computed 
combining 30 boxes

–very small on 

• entirely due to quality of 
Patchy mocks

• Test passed.



Challenge boxes becomes about �stat/3, and for h about �stat/8. These represent magnitudes

that can be marginally detected. One should now keep in mind that we ultimately wish to

ensure that the systematic error is small compared to the statistical error of the data, not of

the Challenge boxes. The statistical error for Challenge boxes is significantly smaller than

the one in Patchy, which will turn out to be comparable to the one of the data, by almost a

factor of 2. This reflects that the covariance matrices are about a factor of 4 di↵erent, in turns

associated with the factor of 4 in di↵erence between the nominal and the e↵ective volume of

the Patchy mocks. This suggests that even for the most extreme case that we consider here,

kmax = 0.3h Mpc�1, the theory-systematic error should to be negligibly small. Indeed, for

the Patchy boxes, we find very marginal (i.e. �syst  0.1�stat) theory systematic error even

for kmax = 0.3h Mpc�1.
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Figure 4: 2D posterior distributions of the cosmological parameters ln(1010As), ⌦m, and h, and the

counterterms b1, b2 and b4, obtained from fitting the power spectrum up to kmax = 0.25h Mpc�1 of

the challenge boxes (left) and the patchy lightcones NGC (right). We can see that we can measure

all the cosmological parameters as well as the bias coe�cients. All degeneracies are broken, though

some to a di↵erent extent than others. We see that the four HOD models on the left di↵er mainly

for their value of b1. The results for the cosmological parameters, which should be equal for all of

them, appear remarkably consistent.

Before moving on, we would like to make the following comment about the theory-

systematic error as extracted from simulations. One can take the point of view that the

simulations and the HOD modeling are exact, i.e. they represent the exact distribution of a

population of galaxies generated according to some physical mechanism. Any deviation from

the exact representation of the physical model (for example if the trajectory of the particles

had a numerical error) would induce a numerical-systematics, that we here assume here to be
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Adding Planck’s sound-horizon prior



• Planck measures sound’s horizon at decoupling very well. 

• For             , highly insensitive to late universe physics.

• This is normally used as `BAO calibration’: we do not need it, but we can use it.

Apply prior on Planck’s horizon at decoupling

⇤CDM

with bispectum : �As = 0.16 , �⌦m = 0.018 , �h = 0.034 , (1)

with powerspectrum : �As = 0.18 , �⌦m = 0.020 , �h = 0.040 , (2)

kmax, bisp = 0.1 (3)

kmax, bisp = 0.07 (4)

0.3� (5)

0.8� (6)

0.9� (7)

As &h (8)

(9)



• Error bar reduction

• No systematic error detected

Challenge Boxes with Planck’s horizon
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Figure 2: Marginalized posterior distributions of the cosmological parameters obtained from fitting

the power spectrum of four Challenge boxes and their average (left), and with the inclusion of

Planck sound horizon prior (right). For each cosmological parameters, the expectation value is given

together with the statistical error and the theory-systematic error (from top to bottom in each

subplot). All numbers are given with a numerical uncertainties of ±1 on the last digit. The vertical

lines represents the fiducial cosmology of the simulation.

in the next subsection on the physical origin of this.

We call �sys an estimate of the theoretical error associated with the higher-order terms

in the EFTofLSS prediction that we have not computed yet and so are not included in the

model we fit to the data. Usually �sys is called a systematic bias, but we do not use this

nomenclature in order to avoid confusion with the EFTofLSS parameters or with other forms

of systematic errors. The challenge boxes are highly correlated, as their initial conditions

are the same (since they are extracted from the same dark-matter simulation, the Big Mul-

tiDark). Thus, �sys is measured by computing the distance between the true value and the

68% confidence region of the average over the four boxes of the distribution of the posteriors

of each box for a given parameter. In particular, �sys is taken to be zero when the true value

is within the 68% confidence region. For Patchy, on the other hand, the initial conditions

are taken to be di↵erent so that each Patchy mock is independent. We therefore measure the

systematic error by computing the distance between the true value and the 68% confidence

region of the distribution obtained by multiplying the posterior distributions of each box.

In other words, for each cosmological parameter, we take the product of the 30 curves of

Fig. 3 17 and compute the distance of the 68% confidence region to the true value. Due to

these degradations would allow a significant measurement of the parameters.
17This is not a completely well-justified procedure, as it would be better to multiply the likelihoods directly,

22



CMB measurements, this one is particularly insensitive to physical processes that act in the

late universe.

The combination of the LSS data with the CMB-measured sound horizon has a long history

of important applications in the community, dating back to the first measurements of this

e↵ect (see for example [74, 75, 80] and references therein), and where it is normally considered

as essential to obtain constraints on the Hubble parameter from LSS data. However, contrary

to the usual cases, here we will use it simply to improve our constraints, as we already have

interesting constraints, and in general to explore the e↵ect of such a CMB-motivated prior.
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Figure 5: 2D posterior distributions of the cosmological parameters ln(1010As), ⌦m, and h, and

the EFT-parameters b1, b2 and b4, with and without Planck sound horizon prior, obtained from

fitting the power spectrum up to kmax = 0.25h Mpc�1 of the challenge box A (left) and the Patchy

box 2 (right). In comparison to Fig. 4, we can see that the Planck constraint on the sound horizon has

restricted the allowed region for ⌦m and h, and left us with a very strong, anticorrelated, potential

degeneracy between ⌦m and h. This potential degeneracy has been broken by the SDSS data, and

we remind it had already been broken without the Planck sound horizon prior.

.

As we saw in the former section, the theory-systematic error that we measured is quite

smaller than the statistic error of BOSS DR12. However, once we apply the Planck prior on

the sound horizon, one might worry that our statistical errors will drop and our theoretical

systematic, which naively will not change, will dominate the error budget. This motivates us

to test the EFTofLSS against the simulations again, using now a prior on the sound horizon.

We refer to App. F for details on the formulas for the sound horizon at decoupling and for

the numerical value of thee prior we use.

The reason why the result of this test is non trivial is because it can be that the Planck

prior will reduce not only the statistical error, but also the theory-systematic error, as we now

29

SDSS Challenges kmax = 0.25

Figure 4: [[[]his figfure need to be redone with the new chian arriving]]] Contour plots

of the partially-marginalized Likelihood of (39) at kmax = 0.25h Mpc�1 [[[assuming already fixed

plot for this]]. With respect to Fig. 2, we can see that the Planck constraints on the sound horizon

has restricted largely the allowed region for ⌦m and h, and left us with a very strong, anticorrelated,

degeneracy between ⌦m and h. Given the power of the Planck constraint, this degeneracy can only

be partially a↵ected by the BOSS data, but it is enough to break it.
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-Clear reduction in the contours
-We get the right cosmology



• The theory error is reduced.

Reduction of systematic
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Figure 5: In the absence of any prior, the theoretical systematic error can be represented as a

vector living in the space of the cosmological parameters that goes from the true value to the average

maximum Likelihood point as obtained from the MCMC’s. �sys for each parameter is nothing but

the component of this vector in the various directions (taking also in account on the uncertainty in

the knowledge of the vector associated to the finite number of simulations at our disposal). If we

impose a prior, for example the Planck sound horizon, the Likelihood is forced to have support only

on a region that is narrower or equal to the one without prior. Therefore, roughly, the resulting

theoretical-systematic error that is obtained after imposing a prior is equal to the one we have

without any prior, projected on the prior has support. This highly reduces the systematic error.

on very similar lines as for the case of the Challenge boxes. to fix figure In Fig. 6 we plot the

marginalized Likelihood for the cosmological parameters. We use the same conventions as in Fig. 1.

In Fig. 7, we plot the contours of the marginalized Likelihood, with the same conventions as in

Fig,. 2.

Overall, we see that we still can measure all the cosmological parameters without significant

theoretical-systematic errors. ???? double check, I am confused by the arrow plot if we are

biased???? very worried????????We also see that the error bars are significantly degraded, for

⌦m also by a factor of two. check with better runs, it is hard to tell now??? Also, why

there is a decrease of the errors? is this the volume left after the mask? What is the

true volume of the pathcy?

Sound horizon prior

When we include the Planck prior on the sound horizon in (41), we find the results for the marginal-

ized Likelihood for the cosmological parameters shown in Fig. 8, and for the contours of the partially-

marginalized Likelihood, in Fig. 9. Overall, we see that we measure all the cosmological parameters

with acceptable significant theoretical-systematic error. In this regards, a particular discussion

should be given for the parameter A. appears that the �sys(A) is close to the value of the statistical

one, which makes it uncomfortably large. However, we should keep in mind that the Patchy mocks

are not extremely accurate simulations, assigning no numerical-systematic error to them appears to

us a bit unrealistic. Given the smallness of the numerical-systematic error that is needed in order

for the theory-systematic error to be acceptable, we consider that the test on patchy mocks is passed

18



Pachy Mocks
• ~same as Challenge

Figure 3: Marginalized posterior distributions of the cosmological parameters obtained from fitting

the power spectrum of ten patchy lightcones NGC and their average (left), and with the inclusion

of Planck sound horizon prior (right). For each cosmological parameters, the expectation value is

given together with the statistical error and the theory-systematic error (from top to bottom in each

subplot).

the distribution obtained by multiplying the posterior distributions for a given parameter as

obtained for each box. In other words, for each cosmological parameter, we take the product

of the four curves of Fig. 2 (13). �sys is taken to be zero when the true value is within the

68% confidence region. For Patchy, analogously, we compute the distance between the true

value and the 68% confidence region of the distribution obtained by multiplying the posterior

distributions for a given parameter as obtained for each box. Overall, we find that �sys is

significantly smaller that the statistical-error �stat at all wavenumbers of interest. More in

detail, we find that at kmax = 0.2h Mpc�1 and kmax = 0.25h Mpc�1, the theory-systematic is

only sizable for As at kmax = 0.2h Mpc�1 for the Challenge boxes, where it is about 1/2 of �stat.

But, we know that, for theoretical reasons, the theory-systematic error that we are trying to

measure is a growing function of kmax, and what we find in the simulations simply suggests

that either these small values of �sys are so small that are dominated by the small statistical

uncertainties in the MCMC runs, or the simulations data have some small systematic errors

at lower k’s, whose statistical weight become irrelevant when additional data are included

by going to higher kmax. In both cases, we conclude that there is no evidence of any sizable

theory-systematic error. As we move to kmax = 0.3h Mpc�1, we find that �sys for ⌦m in the

13This is not a completely well-justified procedure, as it would be better to multiply the Likelihoods directly,
but we consider it good enough given that we find very small theory-systematic errors.
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Adding Bispectrum Monopole



• In the EFTofLSS, the bispectrum at tree level is predicted by the same parameters that 
enter in the one-loop power spectrum.

•          We can analyze it

• (we could also analyze the trispectrum with roughly the same parameters)

• Unfortunately, SDSS does not have an collaboration measurement of the bispectrum

• (nor of the trispectrum).

• The Bispectrum monopole has been measured by 

Bispectrum

Gill Marin et al. 2016 
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• Error bar reduction

• No systematic error detected

Challenge Boxes with Bispectrum monopole
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Figure 7: Marginalized posterior distributions of the cosmological parameters obtained from fitting

the power spectrum and the bispectrum monopole of 30 Patchy lightcones NGC (left, thin lines)

and their average (left, thick lines), and with the inclusion of Planck sound horizon prior (right).

For each cosmological parameters, the expectation value is given together with the statistical error

and the theory-systematic error (from top to bottom in each subplot).

average 17% (respectively, 14% for ln(1010As), 13% for ⌦m, 23% for h). The improvement on

the statistical error is smaller if we included the Planck sound horizon prior: on average 7%

(respectively, 4% for ln(1010As), 6% for ⌦m, 11% for h). We find no significant increase in

the theory systematic error.

Finally, from Fig. 8, we see that the inclusion of the bispectrum allows a much improved

determination of the bias parameters. As we discussed above, this might have important

consequences for our understanding of the galaxy formation mechanisms.

4.6 Summary of tests on simulations

We summarize the results of our tests on numerical simulations in Table 2. We find that we

can determine As, ⌦m and h from the power spectrum data, with no significant role played

by other observations. We also can measure the EFT parameters, allowing, in principle, the

learn about the galaxy formation mechanism.

As representative boxes, in Fig. 9 we plot the best-fit model against the power spectrum

measured from a quarter of the volume of challenge box A, and, on the right, to Box 2

of Patchy. We give in Table 3 the best-fit results from the fit of the power spectrum up

to kmax = 0.25h Mpc�1 and together with the bispectrum up to kmax = 0.1h Mpc�1, from
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Challenge Box +Bispectrum monopole+Plank’s horizon

4.5 Inclusion of bispectrum

We now discuss the e↵ect of the inclusion of the bispectrum monopole in the Likelihood,

obtaining the Likelihood given by (68). The bispectrum monopole has been measured in

Patchy mocks, and so we use them to compare. Given the fact that the Patchy mocks are

not true simulations, one should keep in mind that the systematic error of the simulation

could be larger than expected. We also remind the reader that, as discussed at the end of

App. D, the application of the window function is also done approximately, and this might

induce additional systematic error bars. In order to better limit the one induced by the

window function, we analyze the bispectrum monopole including only triangles whose min-

imum wavenumber is kmin = 0.04h Mpc�1, and whose maximum one is kmax = 0.08h Mpc�1

or kmax = 0.1h Mpc�1, adding 10 and 34 triangles, respectively. For the power spectrum, we

analyze only with kmax = 0.25h Mpc�1, if analyzed in combination with the bispectrum.

Figure 7: Marginalized posterior distributions of the cosmological parameters obtained from fitting

the power spectrum and the bispectrum monopole of ten patchy lightcones NGC and their aver-

age (left), and with the inclusion of Planck sound horizon prior (right). For each cosmological pa-

rameters, the expectation value is given together with the statistical error and the theory-systematic

error (from top to bottom in each subplot).

When analyzing the patchy mocks using the partially-marginalized Likelihood of (68),

we obtain the results presented in Fig. 7 and 8. We see that, without the inclusion of the

Planck sound horizon prior, the error bars on the cosmological parameters are reduced by on

average 15% (respectively, 15% for ln(1010As), 12% for ⌦m, 20% for h). The improvement

on the statistical error is marginally smaller if we include the Planck sound horizon prior:

27

• ~same story

• slight systematic in  

• but due to quality of Mocks

Figure 7: Marginalized posterior distributions of the cosmological parameters obtained from fitting

the power spectrum and the bispectrum monopole of 30 Patchy lightcones NGC (left, thin lines)

and their average (left, thick lines), and with the inclusion of Planck sound horizon prior (right).

For each cosmological parameters, the expectation value is given together with the statistical error

and the theory-systematic error (from top to bottom in each subplot).

average 17% (respectively, 14% for ln(1010As), 13% for ⌦m, 23% for h). The improvement on

the statistical error is smaller if we included the Planck sound horizon prior: on average 7%

(respectively, 4% for ln(1010As), 6% for ⌦m, 11% for h). We find no significant increase in

the theory systematic error.

Finally, from Fig. 8, we see that the inclusion of the bispectrum allows a much improved

determination of the bias parameters. As we discussed above, this might have important

consequences for our understanding of the galaxy formation mechanisms.

4.6 Summary of tests on simulations

We summarize the results of our tests on numerical simulations in Table 2. We find that we

can determine As, ⌦m and h from the power spectrum data, with no significant role played

by other observations. We also can measure the EFT parameters, allowing, in principle, the

learn about the galaxy formation mechanism.

As representative boxes, in Fig. 9 we plot the best-fit model against the power spectrum

measured from a quarter of the volume of challenge box A, and, on the right, to Box 2

of Patchy. We give in Table 3 the best-fit results from the fit of the power spectrum up

to kmax = 0.25h Mpc�1 and together with the bispectrum up to kmax = 0.1h Mpc�1, from
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on average 12% (respectively, 8% for ln(1010As), 12% for ⌦m, 16% for h). We also find no

significant increase in the theory systematic error.

Finally, from Fig. 8, we see that the inclusion of the bispectrum allows a much improved

determination of the bias parameters. As we discussed above, this might have important

consequences for our understanding of the galaxy formation mechanism.
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Figure 8: 2D posterior distributions of the cosmological parameters ln(1010As), ⌦m, and h, and

the galaxy counterterms b1, b2 and b4, obtained from fitting the power spectrum of patchy box 2 up

to kmax = 0.25h Mpc�1, with and without the bispectrum up to kmax = 0.1h Mpc�1, and with and

without the Planck sound horizon prior.

4.6 Summary of tests on simulations

We summarize the results of our tests on the numerical simulations in Table 3. We find that

we can determine As, ⌦m and h from the power spectrum data, with no significant role played

by other observations. We also can measure the bias parameters, allowing, in principle, the

learn about the galaxy formation mechanism.

In Fig. 9 we plot the best fit model against the power spectrum measured from a quarter

of the volume of challenge box A, and, on the right, to Box 5 of patchy. We provide in Table 2
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-Bispectrum:
-10% on cosmological parameter
-~150% on biases (galaxy formation)
-also after Planck’s horizon prior

Patchy Mocks



• ~Small error bars, breaking of degeneracies, no evidence of systematic error up to

• Theoretically and data consistent

Summary of Simulations
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max
,
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�0.8

max

ln(1010As) ⌦m h
�stat �sys �stat �sys �stat �sys

Challenge 0.10 0.00 0.012 0.000 0.029 0.000
Challenge with rd 0.06 0.00 0.008 0.000 0.009 0.000
Patchy NGC 0.18 0.00 0.019 0.007 0.043 0.018
Patchy NGC with rd 0.12 0.07 0.016 0.000 0.018 0.000
Patchy NGC with Bisp. 0.15 0.00 0.016 0.006 0.032 0.022
Patchy NGC with Bisp. with rd 0.11 0.09 0.015 0.000 0.016 0.000

Table 1: Summary of individual Analysis over Simulations up to kmax = 0.25hMpc�1 for the power
spectrum and up to kmax = 0.1hMpc�1 for the bispectrum monopole. See Sec. ?? for a description of
how we measure the systematic error, and the special discussion we have about Patchy mocks and also
that the convergence criterion of the MCMC for the Challenge Full boxes is less strict.
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• We measure 

•                                   appears 
a bit problematic on data, we 
focus on

• to 19%, 5%, 6%

• Adding bispectrum improves 
by ~10%

• from  SDSS alone

BOSS/CMASS NGC sample

5 Analysis of the SDSS/BOSS data

Having successfully tested our pipeline with various kind of simulations, we are ready to

apply the same pipeline to the data. When we analyze the power spectrum only, we obtain

the results shown in Fig. 10 and 12. Next, we apply the bispectrum to obtain the results

presented in Fig. 11 and 12. The best-fit values for all parameters are given in Table 3 and

68% confidence intervals for the cosmological parameters are given in Table 4.

Figure 10: Marginalized posterior distributions of the cosmological parameters obtained from fitting

the power spectrum of the CMASS sample NGC at ze↵ = 0.57 (left), and with the inclusion of Planck

sound horizon prior (right). The green lines represent the constraints from Planck 2018 while the

orange lines represent the constraints from WMAP 9 years.

ln(1010As) ⌦m h

CMASS NGC 2.68 ± 0.19 (+0.16
�0.22) 0.306 ± 0.014 (+0.012

�0.016) 0.741 ± 0.046 (+0.053
�0.039)

CMASS NGC with rd 2.81 ± 0.13 (+0.15
�0.12) 0.291 ± 0.011 (+0.011

�0.010) 0.696 ± 0.013 (+0.015
�0.010)

CMASS NGC with Bisp. 2.58 ± 0.16 (+0.18
�0.15) 0.309 ± 0.014 (+0.010

�0.017) 0.746 ± 0.040 (+0.048
�0.033)

CMASS NGC with Bisp. with rd 2.74 ± 0.14 (+0.15
�0.13) 0.291 ± 0.011 (+0.011

�0.010) 0.699 ± 0.013 (+0.012
�0.013)

Table 4: 68% confidence interval for the cosmological parameters from the individual analysis over

the CMASS NGC sample of the BOSS data up to kmax = 0.25h Mpc�1 for the power spectrum and

up to kmax = 0.1h Mpc�1 for the bispectrum monopole.

There are several features to discuss.
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Figure 12: 2D posterior distributions of the cosmological parameters ln(1010As), ⌦m, and h,

and the galaxies biases b1, b2 and b4, obtained from fitting the CMASS power spectrum up to

kmax = 0.25h Mpc�1, with and without the bispectrum monopole up to kmax = 0.1h Mpc�1, and

with and without the Planck sound horizon prior. The dotted lines represent Planck2018 values.

within what is theoretically expected. See Table 3.

• We obtain consistent constraints on the cosmological parameters from the power-spectrum-

only analysis and from the power-spectrum plus bispectrum-monopole analysis, with

and without the inclusion of the Planck sound horizon prior. The change in the statis-

tical error as we change our data set is consistent with what seen in simulations.

• Fitting the power-spectrum up to kmax = 0.25h Mpc�1 and the bispectrum monopole

up to kmax = 0.10h Mpc�1 determines As, ⌦m and h to about 16%, 4% and 5%, respec-

tively. If we add the Plank prior on the sound horizon, As, ⌦m and h are determined to

about 14%, 3.5% and 1.7%, respectively. The measurements without the bispectrum are

degraded by roughly 10%. [[[[the drop in As is smaller than what we see in the

sims, maybe this explains why f�8 does not improve so much when we add

the bisp and planck. Also, remember that �8 =
p

As, so the improvement in

�8 is half the one of As. It seems to me we are talking of a 7% improvement
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• Green is Planck2018

• Yellow is WMAP9yr

• Inferior to Planck2018, but 
not so much to Planck2013  

• Compared to WMAP9yr, we 
are better in        and 
comparable in      !

• This analysis could have been 
done long time ago

• LSS can be very powerful

BOSS/CMASS NGC sample

5 Analysis of the SDSS/BOSS data

Having successfully tested our pipeline with various kind of simulations, we are ready to

apply the same pipeline to the data. When we analyze the power spectrum only, we obtain

the results shown in Fig. 10 and 12. Next, we apply the bispectrum to obtain the results

presented in Fig. 11 and 12. The best-fit values for all parameters are given in Table 3 and

68% confidence intervals for the cosmological parameters are given in Table 4.

Figure 10: Marginalized posterior distributions of the cosmological parameters obtained from fitting

the power spectrum of the CMASS sample NGC at ze↵ = 0.57 (left), and with the inclusion of Planck

sound horizon prior (right). The green lines represent the constraints from Planck 2018 while the

orange lines represent the constraints from WMAP 9 years.

ln(1010As) ⌦m h

CMASS NGC 2.68 ± 0.19 (+0.16
�0.22) 0.306 ± 0.014 (+0.012

�0.016) 0.741 ± 0.046 (+0.053
�0.039)

CMASS NGC with rd 2.81 ± 0.13 (+0.15
�0.12) 0.291 ± 0.011 (+0.011

�0.010) 0.696 ± 0.013 (+0.015
�0.010)

CMASS NGC with Bisp. 2.58 ± 0.16 (+0.18
�0.15) 0.309 ± 0.014 (+0.010

�0.017) 0.746 ± 0.040 (+0.048
�0.033)

CMASS NGC with Bisp. with rd 2.74 ± 0.14 (+0.15
�0.13) 0.291 ± 0.011 (+0.011

�0.010) 0.699 ± 0.013 (+0.012
�0.013)

Table 4: 68% confidence interval for the cosmological parameters from the individual analysis over

the CMASS NGC sample of the BOSS data up to kmax = 0.25h Mpc�1 for the power spectrum and

up to kmax = 0.1h Mpc�1 for the bispectrum monopole.

There are several features to discuss.
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• quite as in sims

CMASS NGC + Bispectrum Mon

Figure 11: Marginalized posterior distributions of the cosmological parameters obtained from fitting

the power spectrum and the bispectrum of the CMASS sample NGC at ze↵ = 0.57 (left), and with

the inclusion of Planck sound horizon prior (right).

p-value of Planck 1� value

ln
�
1010As

�
⌦m h

CMASS NGC 0.113 0.534 0.170

CMASS NGC with rd 0.087 0.042 0.143

CMASS NGC with Bisp. 0.011 0.661 0.034

CMASS NGC with Bisp. with rd 0.042 0.085 0.072

Table 5: p-value for the closest 1� value of the cosmological parameters as measured by Planck2018,

with respect to the individual Analysis over the CMASS NGC sample of the BOSS data at kmax =

0.25h Mpc�1 for the power spectrum and kmax = 0.1h Mpc�1 for the bispectrum monopole.

• The statistical errors are quite similar to the ones we find in patchy mocks. The

only exception is kmax = 0.3h Mpc�1, where the statistical errors are larger than at

kmax = 0.25h Mpc�1. Given that we have found no issues in the simulations at kmax =

0.3h Mpc�1, we assume that this is due to fiber collisions or to some other unknown

observational systematic in the data at such an high kmax, and instead we focus on

kmax = 0.25h Mpc�1. One should additionally notice that b1 on data is slightly larger

than the one we find in patchy, suggesting that the theoretical error on the data might

be somewhat larger (but we do not expect by a relevant amount).

• The best fit model has an high p-value and the values of the counterterms are well
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• quite as in sims

CMASS NGC + Planck’s horizon

5 Analysis of the SDSS/BOSS data

[[[need plot of data and best fit, as we did for sims]]]

Having successfully tested our pipeline with various kind of simulations, we are ready to

apply the same pipeline to the data. When we analyze the power spectrum only, we obtain

the results shown in Fig. 10 and 12. Next, we apply the bispectrum to obtain the results

presented in Fig. 11 and 12. The best-fit values for all parameters are given in Table 3 and

68% confidence intervals for the cosmological parameters are given in Table 4.

Figure 10: Marginalized posterior distributions of the cosmological parameters obtained from fitting

the power spectrum of the CMASS sample NGC at ze↵ = 0.57 (left), and with the inclusion of Planck

sound horizon prior (right). The green lines represent the constraints from Planck 2018 while the

orange lines represent the constraints from WMAP 9 years.

ln(1010As) ⌦m h

CMASS NGC 2.68 ± 0.19 (+0.16
�0.22) 0.306 ± 0.014 (+0.012

�0.016) 0.741 ± 0.046 (+0.053
�0.039)

CMASS NGC with rd 2.81 ± 0.13 (+0.15
�0.12) 0.291 ± 0.011 (+0.011

�0.010) 0.696 ± 0.013 (+0.015
�0.010)

CMASS NGC with Bisp. 2.58 ± 0.16 (+0.18
�0.15) 0.309 ± 0.014 (+0.010

�0.017) 0.746 ± 0.040 (+0.048
�0.033)

CMASS NGC with Bisp. with rd 2.74 ± 0.14 (+0.15
�0.13) 0.291 ± 0.011 (+0.011

�0.010) 0.699 ± 0.013 (+0.012
�0.013)

Table 4: 68% confidence interval for the cosmological parameters from the individual analysis over

the CMASS NGC sample of the BOSS data up to kmax = 0.25h Mpc�1 for the power spectrum and

up to kmax = 0.1h Mpc�1 for the bispectrum monopole.

There are several features to discuss.
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• Best fit model:

• Data Consistency

• good p-value 

• nothing major

• similar to Patchy

Data Best Fit
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Figure 12: Best-fit CMASS NGC power spectrum at kmax = 0.25h Mpc�1 and residuals. The error

bars represent the diagonal terms of the covariance.

inferior to the ones of Planck2018 for all cosmological parameters, once we compare to

WMAP9yr, we find that ours are slightly inferior for h and superior for ⌦m. Given that,

roughly speaking, BOSS is currently not the most advanced LSS experiment similarly

to how WMAP is not currently the most advanced CMB experiment, this comparison

with WMAP9yr is highly suggestive, and bearing lots of hopeful expectations, for the

potentialities of LSS science in the next decade or two.

• Without the inclusion of the Planck prior on the sound horizon, the preferred values of

the cosmological parameters are somewhat in disagreement with the ones of Planck2018,

even though not at a statistical significant level. In particular, we find that with the in-

clusion of the bispectrum the closest Planck2018 1� value of As is disfavored at about 1%

(see Table 5). The values for ⌦m are compatible with the ones of Planck2018, while for

the Hubble parameter, we find a larger value, with the Planck2018 one very-marginally

disfavored at about 4%. Compared to WMAP9yr, we find that our disagreement is

stronger for As, but better for h, where the mild tension completely disappears. The

mild tension is also weaker if we do not include the bispectrum.

• When we add the Planck prior on the sound horizon, we notice a sizeable (but still

compatible with the error bars) shift of As to larger values, h to smaller values, and

⌦m to smaller values. This alleviates the ‘mild’ tension with Planck (see Table 5). It

would clearly be interesting to explore if extensions of ⇤CDM can ameliorate this mild

tension. We discuss more about this in the conclusions.
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ln(1010
As) ⌦m h min �

2
/d.o.f. p-value

Challenge A 3.04 0.298 0.685 50/(72-11) 0.84

Patchy NGC 2 3.37 0.304 0.623 105/(111-11) 0.35

Patchy NGC 2 + Bisp. 3.27 0.306 0.625 132/(111+34-12) 0.51

CMASS NGC 2.70 0.308 0.742 106/(111-11) 0.32

CMASS NGC + Bisp. 2.68 0.309 0.747 133/(111+34-12) 0.48

b1 b2 b3 b4 cct cr,1 cr,2 10 ⇥ c✏,1 10 ⇥ c✏,4

Challenge A 2.0 -4.6 1.4 6.0 -2.9 -13.7 -0.8 -0.4 -

Patchy NGC 2 1.7 -1.3 -4.5 2.3 -4.9 -8.0 -3.0 0.8 -

Patchy NGC 2 + Bisp. 1.9 0.2 -4.9 1.4 -2.9 -10.0 -2.4 0.0 0.3

CMASS NGC 2.3 3.1 3.2 -1.0 0.0 -9.2 0.5 0.0 -

CMASS NGC + Bisp. 2.3 -2.8 5.3 4.3 1.0 -12.2 0.7 0.0 0.9

Table 3: Best-fit values and goodness of fit of the power spectrum up to kmax = 0.25h Mpc�1 and of

the bispectrum monopole up to kmax = 0.1h Mpc�1, with km = 0.7h Mpc�1 and n̄g = 3·10�4
h Mpc�1.

5 Analysis of the SDSS/BOSS data

Having successfully tested our pipeline with various kind of simulations, we are ready to

apply the same pipeline to the data. When we analyze the power spectrum only, we obtain

the results shown in Fig. 10 and 13. Next, we apply the bispectrum to obtain the results

presented in Fig. 11 and 13. The best-fit values for all parameters are given in Table 3 and

68% confidence intervals for the cosmological parameters are given in Table 4. In Fig. 12,

we plot the best-fit power spectrum against the measurements data and the residuals. We

provide the correlation among all parameters and the full 2D posterior surfaces in App. F.
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the CMASS NGC sample of the BOSS data up to kmax = 0.25h Mpc�1 for the power spectrum and

up to kmax = 0.1h Mpc�1 for the bispectrum monopole.

There are several features to discuss.

• The statistical errors are quite similar to the ones we find in patchy mocks. The

only exception is kmax = 0.3h Mpc�1, where the statistical errors are larger than at

kmax = 0.25h Mpc�1. Given that we have found no issues in the simulations at kmax =
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apply the same pipeline to the data. When we analyze the power spectrum only, we obtain

the results shown in Fig. 10 and 13. Next, we apply the bispectrum to obtain the results

presented in Fig. 11 and 13. The best-fit values for all parameters are given in Table 3 and
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we plot the best-fit power spectrum against the measurements data and the residuals. We

provide the correlation among all parameters and the full 2D posterior surfaces in App. F.
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apply the same pipeline to the data. When we analyze the power spectrum only, we obtain

the results shown in Fig. 10 and 13. Next, we apply the bispectrum to obtain the results

presented in Fig. 11 and 13. The best-fit values for all parameters are given in Table 3 and
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• all data sets consistent and good (also as we change           ).

•                                           is about 36% better than the SDSS collaboration

• but we did not use the SGC, so, just counting volume, we expect to be 50% better

• plus, we measure all parameters

Summary of Error bars

5 Analysis of the SDSS/BOSS data

[[[need plot of data and best fit, as we did for sims]]]

Having successfully tested our pipeline with various kind of simulations, we are ready to

apply the same pipeline to the data. When we analyze the power spectrum only, we obtain

the results shown in Fig. 10 and 12. Next, we apply the bispectrum to obtain the results

presented in Fig. 11 and 12. The best-fit values for all parameters are given in Table 3 and

68% confidence intervals for the cosmological parameters are given in Table 4.

Figure 10: Marginalized posterior distributions of the cosmological parameters obtained from fitting

the power spectrum of the CMASS sample NGC at ze↵ = 0.57 (left), and with the inclusion of Planck

sound horizon prior (right). The green lines represent the constraints from Planck 2018 while the

orange lines represent the constraints from WMAP 9 years.
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• Mild tension with Planck, ameliorated by inclusion of Plank’s sound’s horizon

• Of course, community should re-check the observational systematics.

Tension with Planck

5 Analysis of the SDSS/BOSS data
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Having successfully tested our pipeline with various kind of simulations, we are ready to

apply the same pipeline to the data. When we analyze the power spectrum only, we obtain

the results shown in Fig. 10 and 12. Next, we apply the bispectrum to obtain the results

presented in Fig. 11 and 12. The best-fit values for all parameters are given in Table 3 and

68% confidence intervals for the cosmological parameters are given in Table 4.
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the power spectrum of the CMASS sample NGC at ze↵ = 0.57 (left), and with the inclusion of Planck

sound horizon prior (right). The green lines represent the constraints from Planck 2018 while the

orange lines represent the constraints from WMAP 9 years.
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Figure 11: Marginalized posterior distributions of the cosmological parameters obtained from fitting

the power spectrum and the bispectrum of the CMASS sample NGC at ze↵ = 0.57 (left), and with

the inclusion of the Planck sound horizon prior (right).

p-value of Planck 1� value e↵ective �-deviation of Planck 1� value

ln
�
1010

As

�
⌦m h ln

�
1010

As

�
⌦m h

CMASS NGC 0.12 0.84 0.20 1.6 0.2 1.3

CMASS NGC with rd 0.11 0.11 0.20 1.6 1.6 1.3

CMASS NGC with Bisp. 0.01 0.95 0.04 2.6 0.1 2.1

CMASS NGC with Bisp. with rd 0.06 0.16 0.13 1.9 1.4 1.5

Table 5: Value of the probability (i.e. p-value) for the closest 1� value of the cosmological param-

eters as measured by Planck2018, with respect to the individual analyses over the CMASS NGC

sample of the BOSS data at kmax = 0.25h Mpc�1 for the power spectrum and kmax = 0.1h Mpc�1

for the bispectrum monopole. We also include the e↵ective number of �’s such a p-value would

correspond to in a putative Gaussian distribution. We conclude that our results are consistent with

Planck2018, with the largest discrepancy present in ln(1010As).

There are several features to discuss.

• The statistical errors are quite similar to the ones we find in Patchy mocks. The only

exception is kmax = 0.3h Mpc�1, where the statistical errors are larger compared to

kmax = 0.25h Mpc�1. Given that we have found no issues in the simulations at kmax =

0.3h Mpc�1, and there many potential observational systematic errors that could become

relevant at such high kmax (such as for example fiber collision) that we do not include, we
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• It is highly biased even at 

• It has much larger error bars

• Does not break degeneracies

Linear Theory

kmax = 0.1h/Mpc

k [h/Mpc] (1)

0.6� (2)

0.4� (3)

�/2 (4)

(5)



• These results suggest we can extract much more cosmological and galactic information 
from LSS

• For the EFTofLSS community:

• Use some priors from sims on our parameters.

• Higher order calculations.

• of course, extend analyses to beyond 

• From community:

• Very important: measure higher                          functions.

• Get trustable priors from numerical simulations

• Go back to observational systematic errors.

• Hopefully we can team up with specialists, and do it for all experiments (eBOSS, 
DES, DESI, Euclid,LSST, …)

What is next?

n� point

kmax = 0.1h/Mpc (1)

k [h/Mpc] (2)

0.6� (3)

0.4� (4)

�/2 (5)

(6)

�8 is half the one of As. It seems to me we are talking of a 7% improvement

that we would expect]]]

• In fig. 10 and 11 we plot our results together with the 68% confidence interval from

Planck2018 [71] and WMAP9yr [78]. We see that while our measurements are clearly

inferior to the ones of Planck2018 for all cosmological parameters, once we compare to

WMAP9yr, we find that ours are slightly inferior for h and superior for ⌦m. Given that,

roughly speaking, BOSS is currently not the most advanced LSS experiment similarly

to how WMAP is not currently the most advanced CMB experiment, this comparison

with WMAP9yr is highly suggestive, and bearing lots of hopeful expectations, for the

potentialities of LSS science in the next decade or two.

• Without the inclusion of the Planck prior on the sound horizon, the preferred values of

the cosmological parameters are somewhat in disagreement with the ones of Planck2018,

even though not at a statistical significant level. In particular, we find that the closest

Planck 1� value of As is disfavored at about 1% (see Table 5). The values for ⌦m

are compatible with the ones of Planck, while for the Hubble parameter, we find a

larger value, with the Planck one very-marginally disfavored at about 3%. Compared

to WMAP9yr, we find that our disagreement is stronger for As, but better for h, where

the mild tension completely disappears.

• When we add the Planck prior on the sound horizon, we notice a sizable (but still

compatible with the error bars) shift of As to larger values, h to smaller values, and

⌦m to smaller values. This alleviates the ‘mild’ tension with Planck (see Table 5). It

would clearly be interesting to explore if extensions of ⇤CDM can ameliorate this mild

tension. We discuss more about this in the conclusions.

• Our bound on the derived quantity f�8 from the power spectrum reads 0.42 (+0.033
�0.021),

so that �stat = 0.027. The measurement does not improve relevantly when we add the

bispectrum monopole or the Planck prior on the sound horizon, while from simulations

we would expect at least a 10% improvement. Most probably this is because the decrease

in the statistical error of As when we add these new data is smaller than what we see in

the simulations. Our statistical error is about 36% better than the bound obtained by

the SDSS collaboration in [22], which uses the NSG and SCG samples, while we do use

only the NGC. Since SCG is about 1/3 of the volume of NGC, one would expect another

⇠ 10% improvement, so that our improvement with respect to the SDSS collaboration

in [22] could be expected to become close to a factor of 2.

• We finally note that the unprecedented precision of these measurements, as well as the

braking of previously-unbroken degeneracies, should warn us against possibly yet un-

measured observational systematics. Though we find no issues on the theory side and

in the comparison with the simulations, we make no assessment of the potential obser-
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• After a long theoretical development, the EFTofLSS is being applied to LSS data, in 
this case the SDSS.

• It seems that there can be a major qualitative and quantitive improvement on the way 
we use LSS data.

• To me, the opportunity is great, the importance of doing this is utmost, and there is lots 
of work to do for lots of people

Summary

5 Analysis of the SDSS/BOSS data
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Having successfully tested our pipeline with various kind of simulations, we are ready to

apply the same pipeline to the data. When we analyze the power spectrum only, we obtain

the results shown in Fig. 10 and 12. Next, we apply the bispectrum to obtain the results

presented in Fig. 11 and 12. The best-fit values for all parameters are given in Table 3 and

68% confidence intervals for the cosmological parameters are given in Table 4.

Figure 10: Marginalized posterior distributions of the cosmological parameters obtained from fitting

the power spectrum of the CMASS sample NGC at ze↵ = 0.57 (left), and with the inclusion of Planck

sound horizon prior (right). The green lines represent the constraints from Planck 2018 while the

orange lines represent the constraints from WMAP 9 years.
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�0.016) 0.741 ± 0.046 (+0.053
�0.039)

CMASS NGC with rd 2.81 ± 0.13 (+0.15
�0.12) 0.291 ± 0.011 (+0.011

�0.010) 0.696 ± 0.013 (+0.015
�0.010)

CMASS NGC with Bisp. 2.58 ± 0.16 (+0.18
�0.15) 0.309 ± 0.014 (+0.010

�0.017) 0.746 ± 0.040 (+0.048
�0.033)

CMASS NGC with Bisp. with rd 2.74 ± 0.14 (+0.15
�0.13) 0.291 ± 0.011 (+0.011

�0.010) 0.699 ± 0.013 (+0.012
�0.013)

Table 4: 68% confidence interval for the cosmological parameters from the individual analysis over

the CMASS NGC sample of the BOSS data up to kmax = 0.25h Mpc�1 for the power spectrum and

up to kmax = 0.1h Mpc�1 for the bispectrum monopole.

There are several features to discuss.
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