

Nonlinear Reconstruction

Yu Yu (余瑜), Shanghai Jiao Tong University 06 Mar 2019@YITP, Kyoto

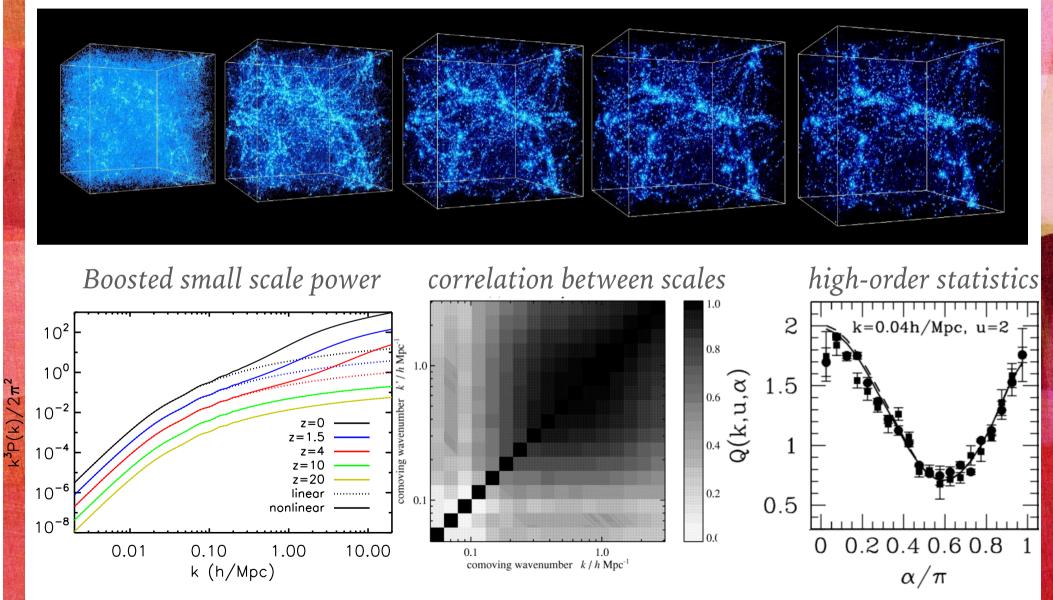
Nonlinear Reconstruction

Collaborate with Hong-Ming Zhu (Berkeley), Ue-Li Pen, Xin Wang (CITA)

Outline

- Nonlinear evolution and standard reconstruction
- ► New reconstruction and performance
- Reconstruction with RSD effect
- ► In progress
- ► Conclusion

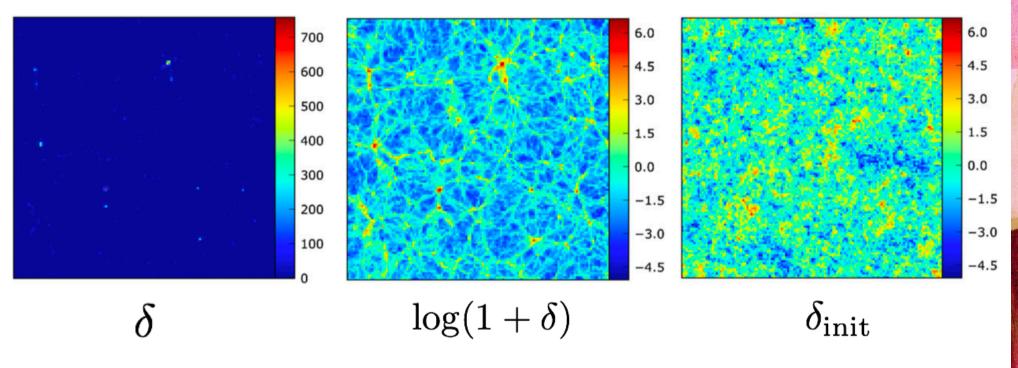
Nonlinear evolution



Rimes & Hamilton 2005

Guo & Jing 2009

Local transform helps



For weak lensing

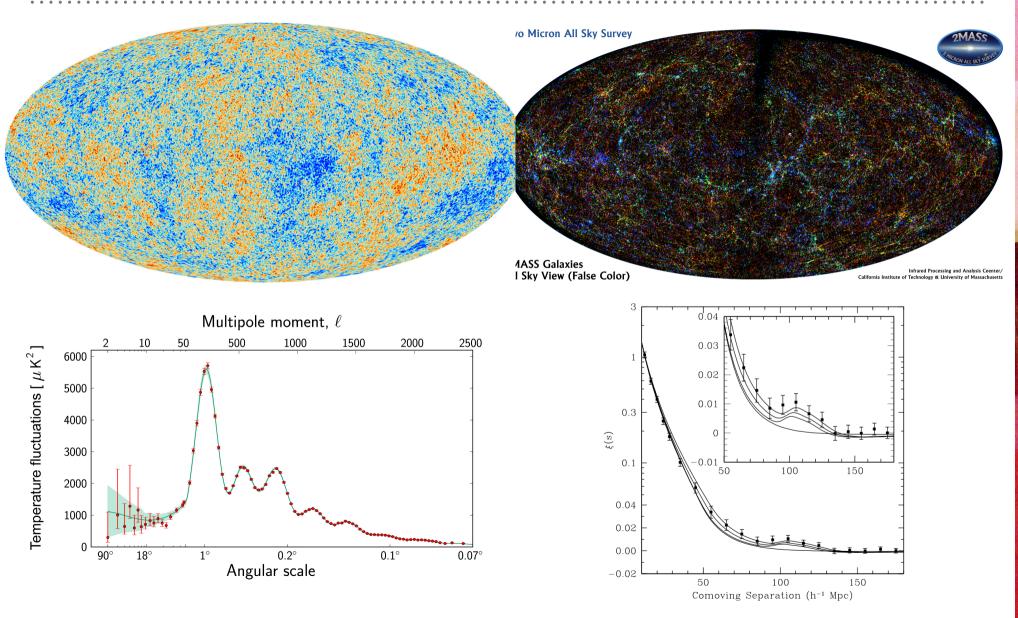
Yu et al. 2011, 2012

Yu et al. 2015

Local transforms are

- ► Useful in analysis
- ► Useful in producing mocks (LogN)
- Useless in recovering the early state

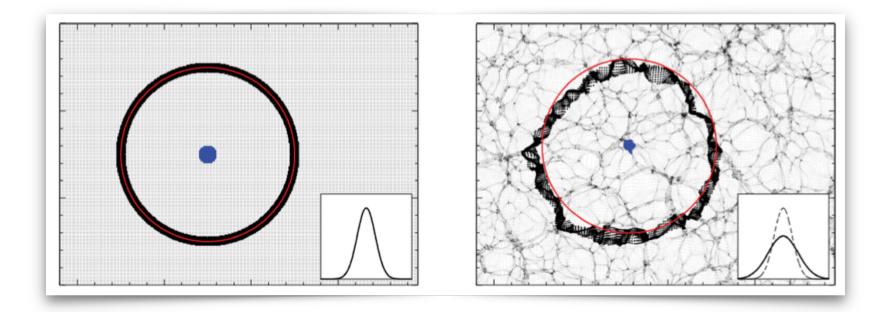
Nonlinear evolution



Planck 2013

Eisenstein+ 2005

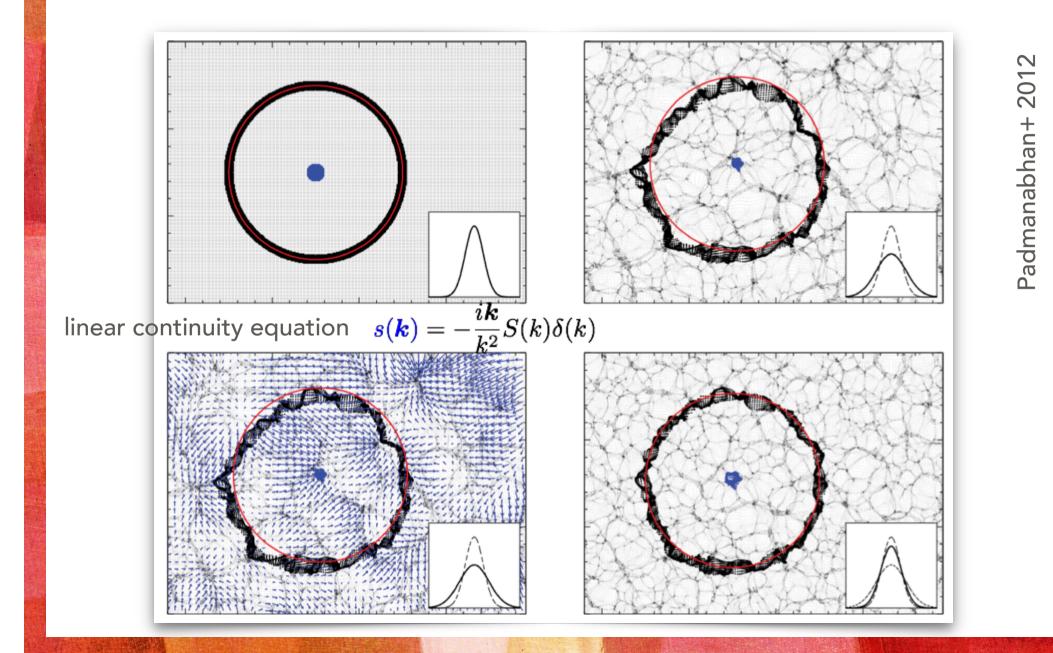
Baryon Acoustic Oscillation



► bulk motion

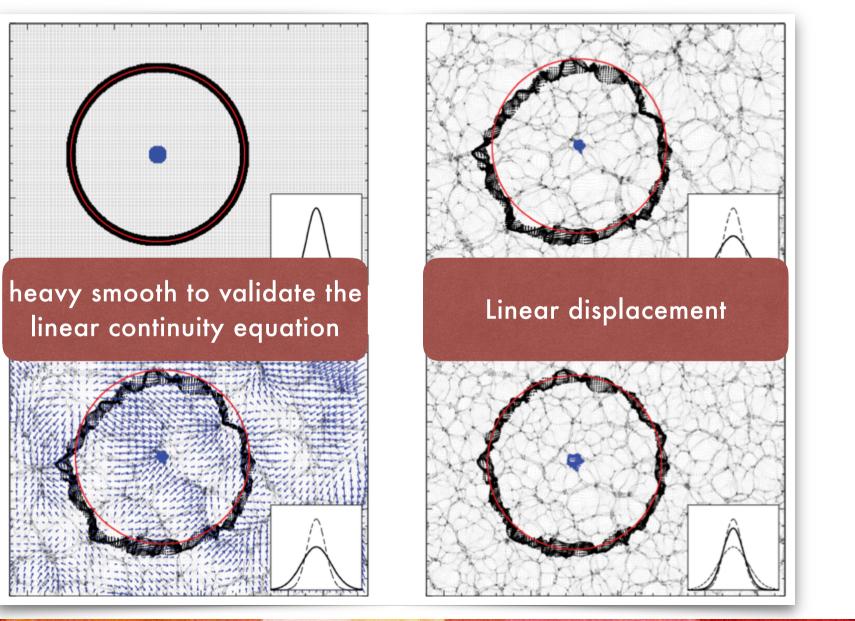
- ► redshift space distortion
- ► nonlinear growth

Standard BAO reconstruction





Standard BAO reconstruction



Padmanabhan+ 2012

Outline

- Nonlinear evolution and standard reconstruction
- ► New reconstruction and performance
- Reconstruction with RSD effect
- ► In progress
- ► Conclusion

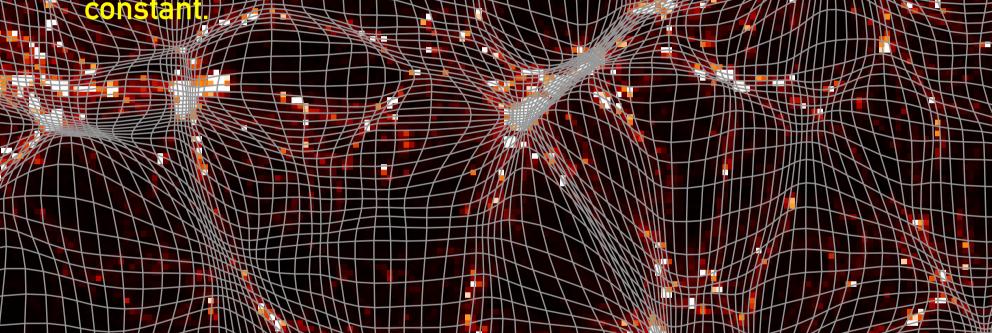
NEW reconstruction method

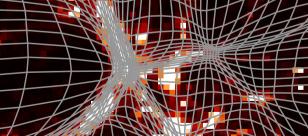
- ➤ The initial condition of our Universe is homogeneous, isotropic, and UNIFORM (~10⁻⁵ at z=1100).
- How about solving for a curvilinear coordinate, in which the mass per grid is constant.

$$ho(\boldsymbol{x}) \qquad
ho(\boldsymbol{\xi}) \mathrm{d}^{3} \boldsymbol{\xi} = \mathrm{constant}$$

NECONSULCTION

solve for a curvilinear coordinate, in which the mas

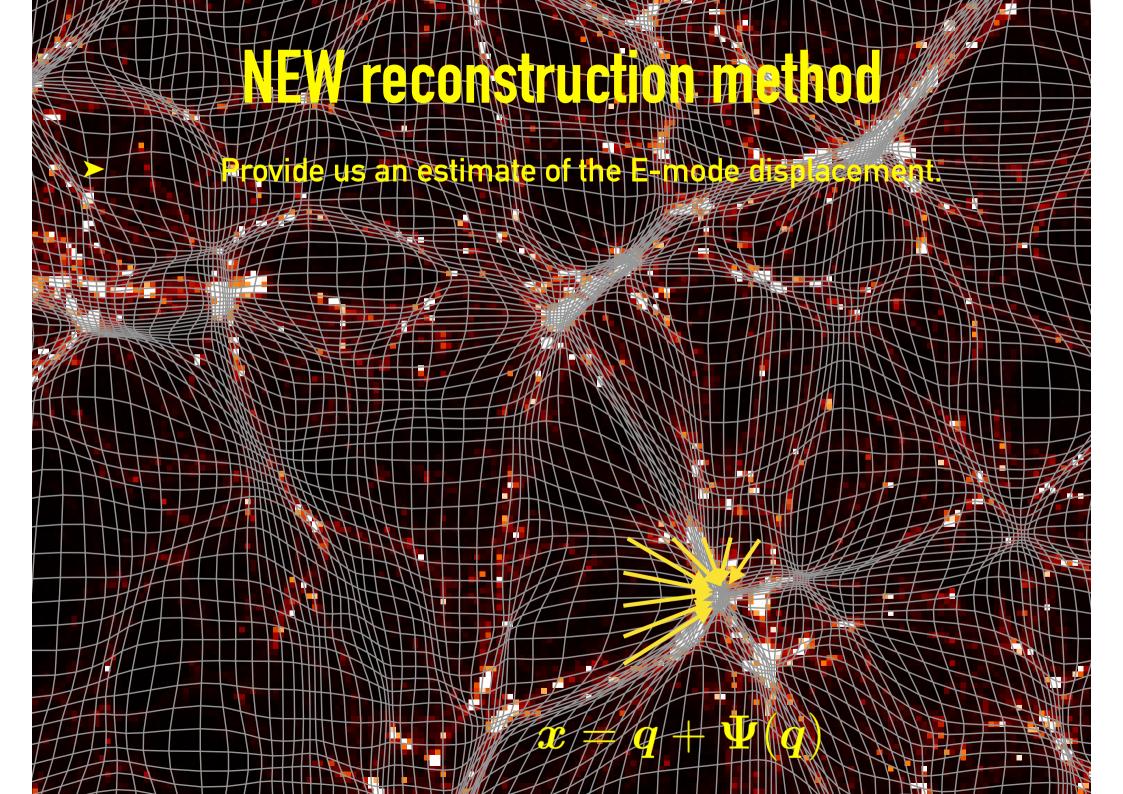




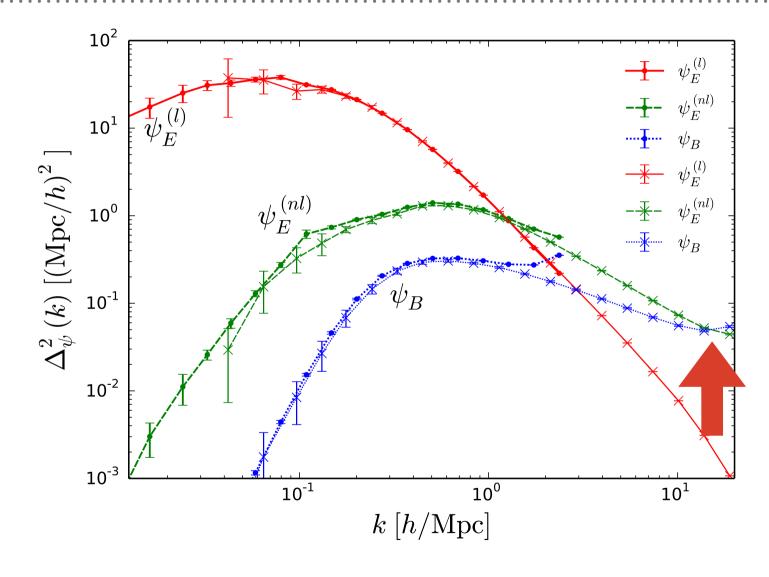
Algorithm

- Originally used in moving mesh simulation (N-body and hydrodynamic; see Pen 1995 & 1998)
 - solve for a mesh following the nonlinear density evolution at each time step
 - ► to keep (approximately) constant mass/energy resolution

- In our case, we need solve for a mesh consistent with the highly nonlinear density field, perturbatively and iteratively.
- ► POTENTIAL ISOBARIC GAUGE/COORDINATE



Displacement components



 $\psi = \psi_{\rm E}{}^{\rm L} + \psi_{\rm E}{}^{\rm NL} + \psi_{\rm B}$

Definition

Reconstructed density field

Linear density field

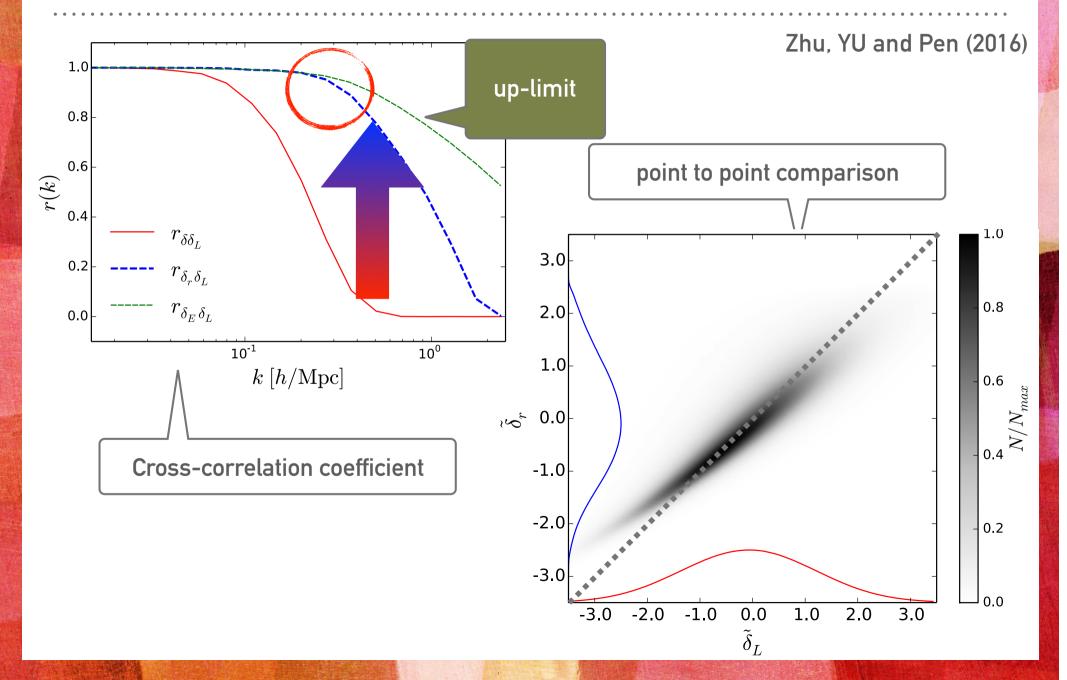
 $\delta_R = -\nabla \cdot \Psi_R$

 δ_L

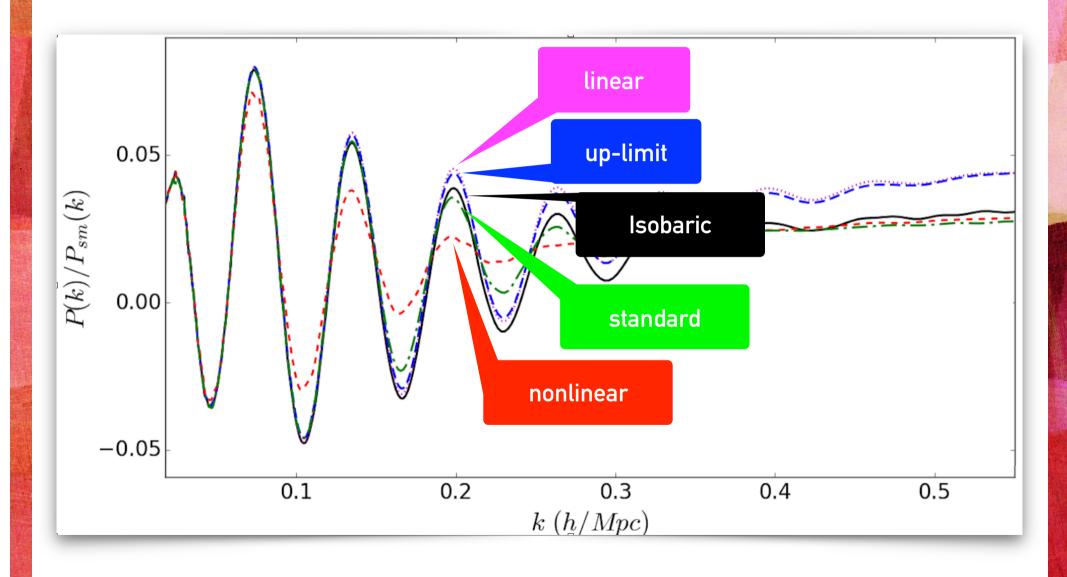
Reconstruction by real displacement

$$\delta_E = -
abla \cdot \Psi_E$$

Correlation with initial condition

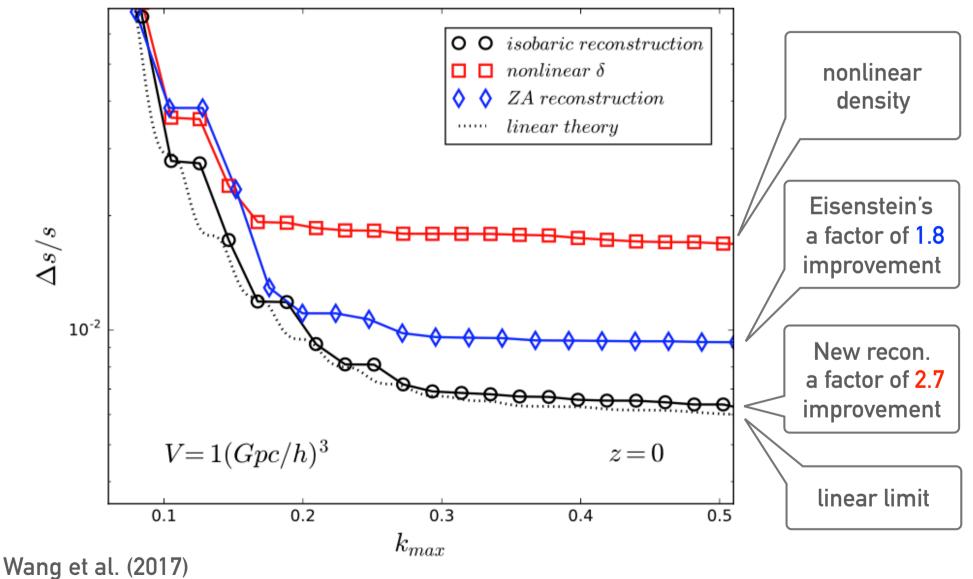


Acoustic peak recovery

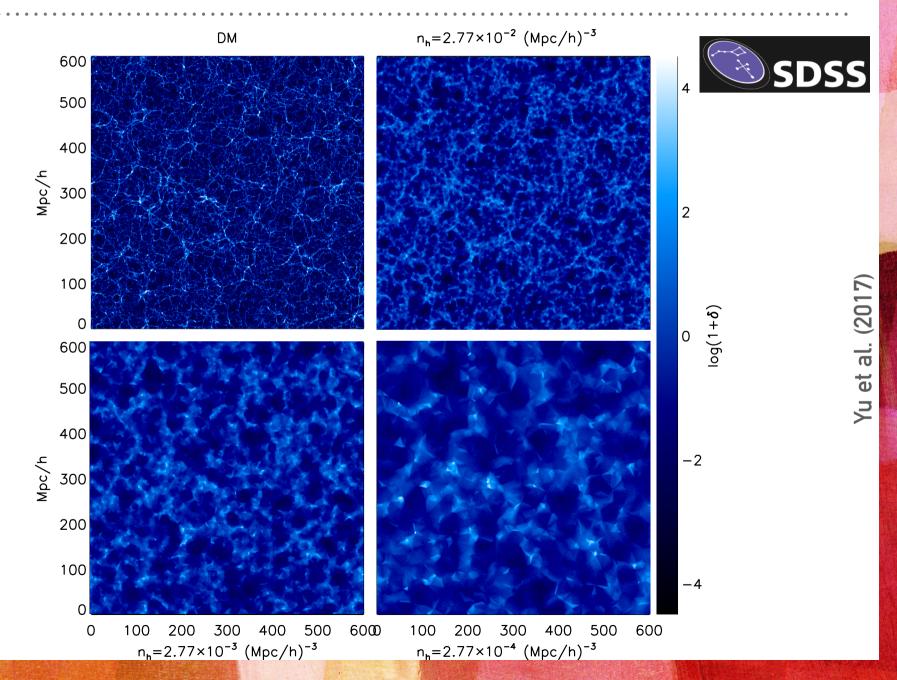


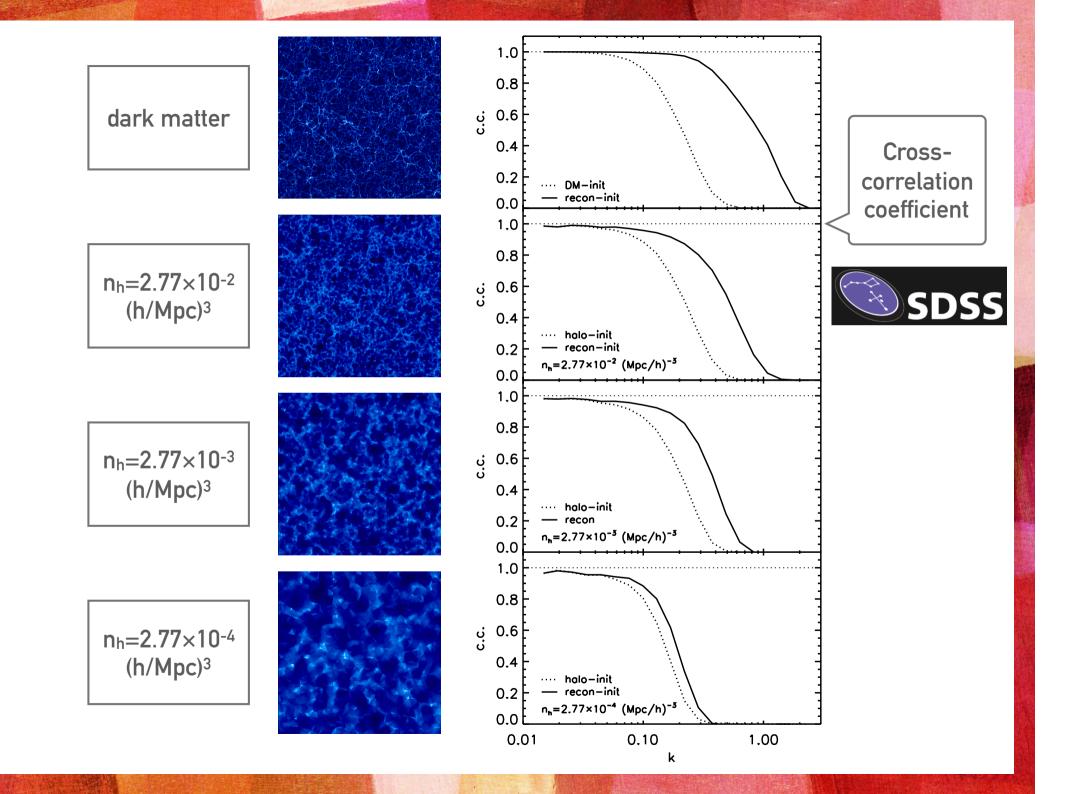
Wang et al. (2017)

Fractional error on the distance measurement



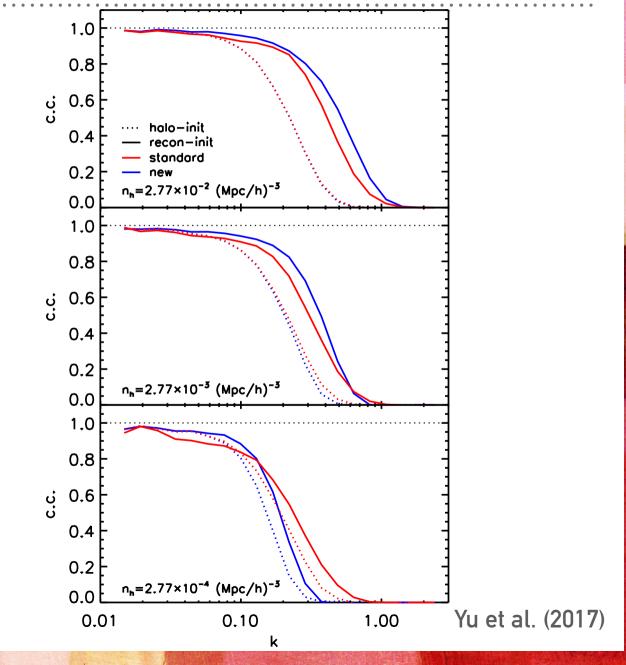
Halo fields

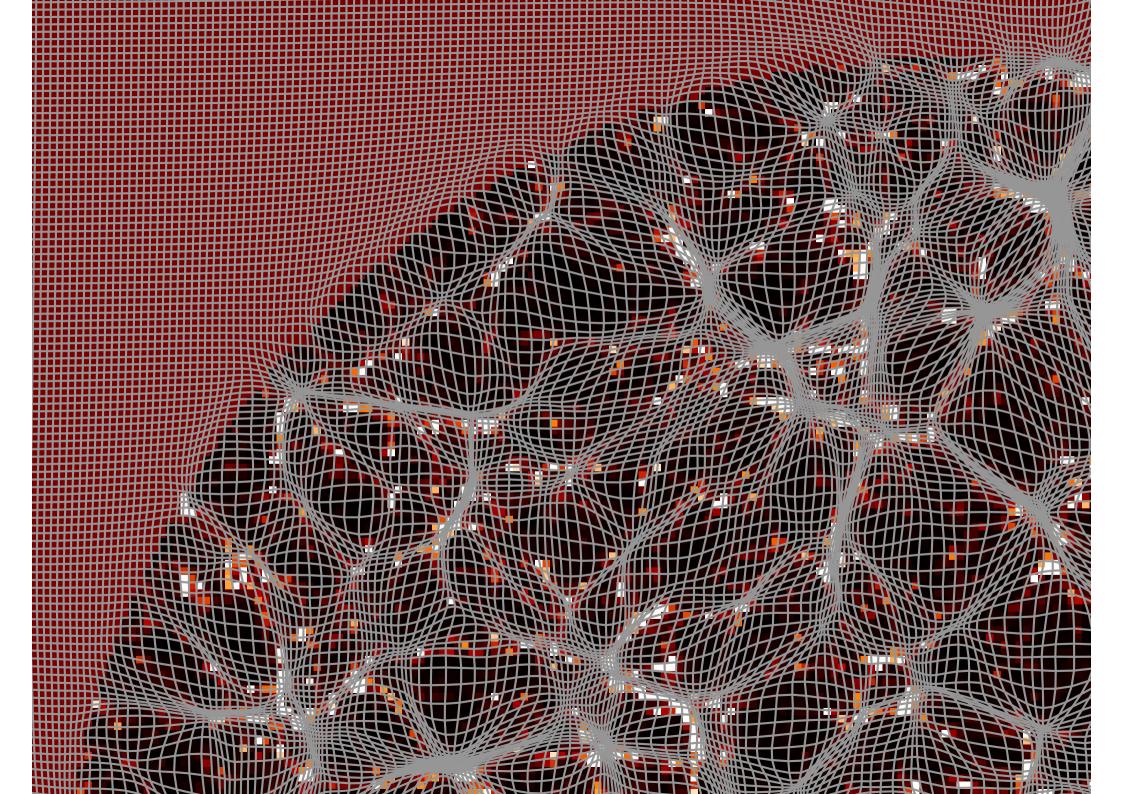




v.s. standard reconstruction

 indeed outperform over the standard BAO reconstruction method for dense sample (n_g>10⁻³(Mpc/h)⁻³).

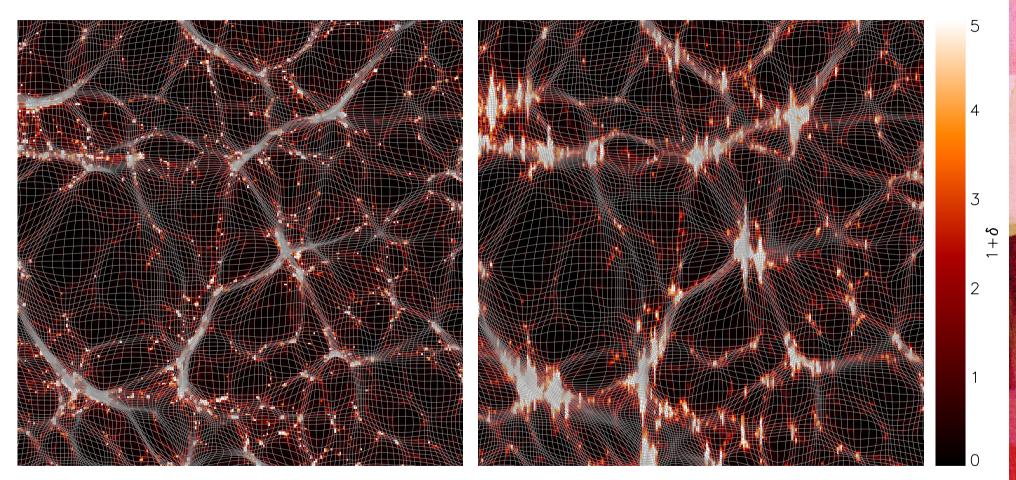




Outline

- Nonlinear evolution and standard reconstruction
- ► New reconstruction and performance
- Reconstruction with RSD effect
- ► In progress
- ► Conclusion

Reconstruction with RSD



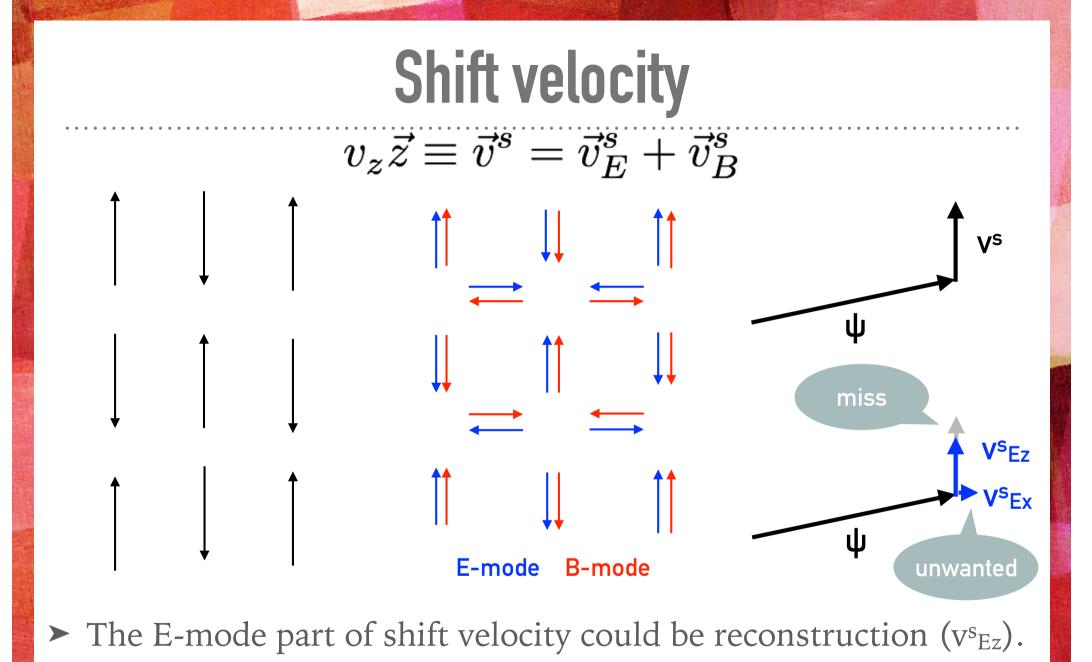
 $z^{\text{obs}} = z^{\text{hubble}} + z^{\text{pv}}$

Algorithm works with RSD

Reconstruction with RSD

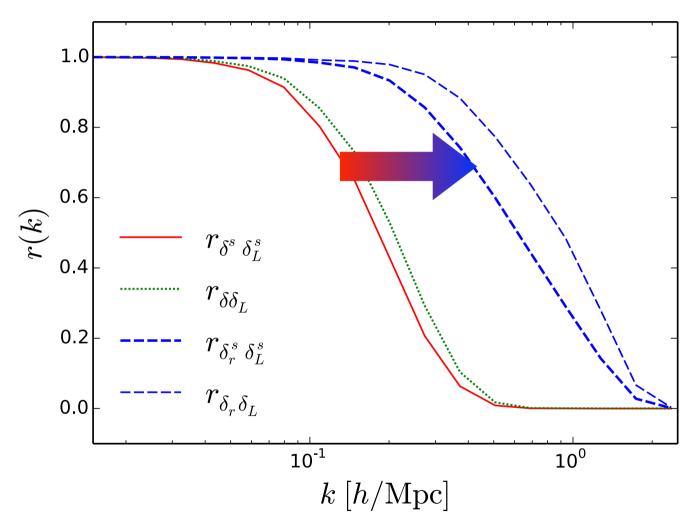
$$\vec{x}(t) = \vec{q} + \vec{\Psi}(\vec{q}, t)$$
$$\vec{x}(t) = \vec{q} + \vec{\Psi}(\vec{q}, t) + v_z \vec{z}/aH$$

- ► Thus, RSD resides in the reconstructed density field.
- ► Before reconstruction: nonlinear density + nonlinear RSD
- ► After reconstruction: more linear density + more linear RSD?



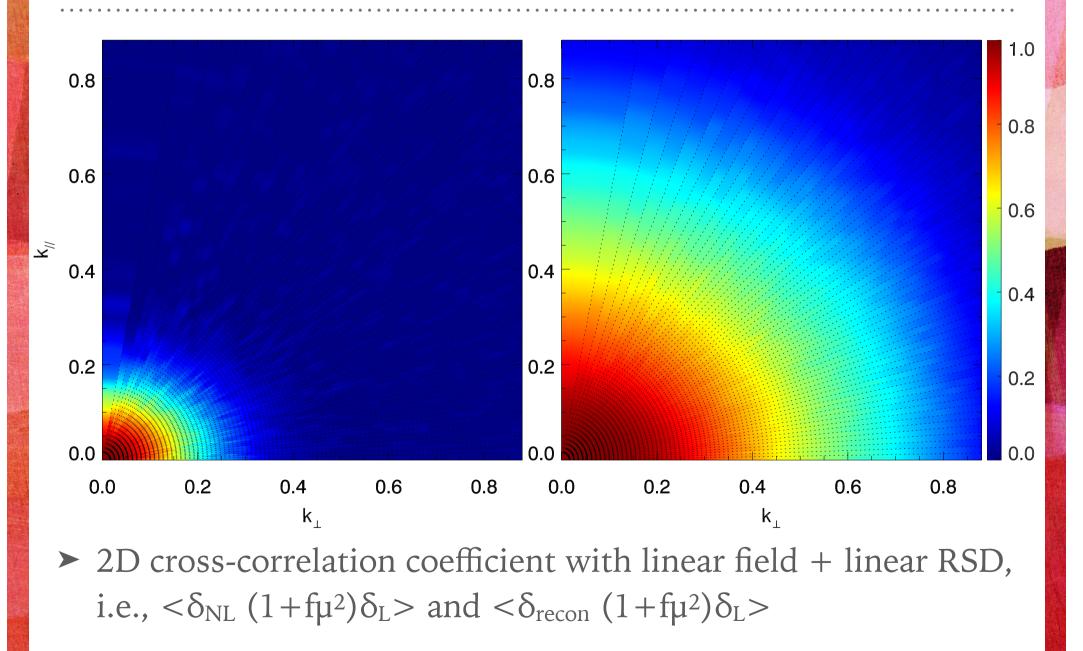
► Unwanted byproducts, v^s_{Ex}, v^s_{Ey}

1D Cross-correlation coefficient



► 1D cross-correlation coefficient with linear field + linear RSD, i.e., $<\delta_{NL} (1+f\mu^2)\delta_L >$ and $<\delta_{recon} (1+f\mu^2)\delta_L >$

2D Cross-correlation coefficient



Reconstruction with RSD

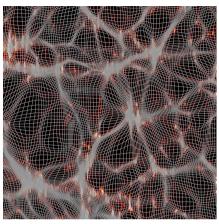
- Usually we use upto k=0.1 h/Mpc, since nonlinear RSD is not well understood.
- RSD is more linear in the reconstructed ANISOTROPIC density field.
- ► In principal, RSD could be modeled better. (not shown here)

More linear RSD means more robust constraints on modified gravity?

Outline

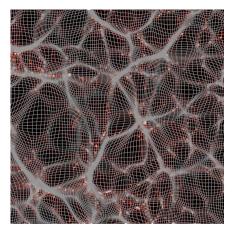
- Nonlinear evolution and standard reconstruction
- ► New reconstruction and performance
- Reconstruction with RSD effect
- ► In progress
- ► Conclusion

Multipole moments



150 Mpc/h

 $\delta^{s}(k) = \delta(k)(1 + \beta\mu^{2})$



150 Mpc/h

 $P_l^s(k) = \frac{2l+1}{2} \int_{-1}^{1} P(k,\mu) L_l(\mu) d\mu$

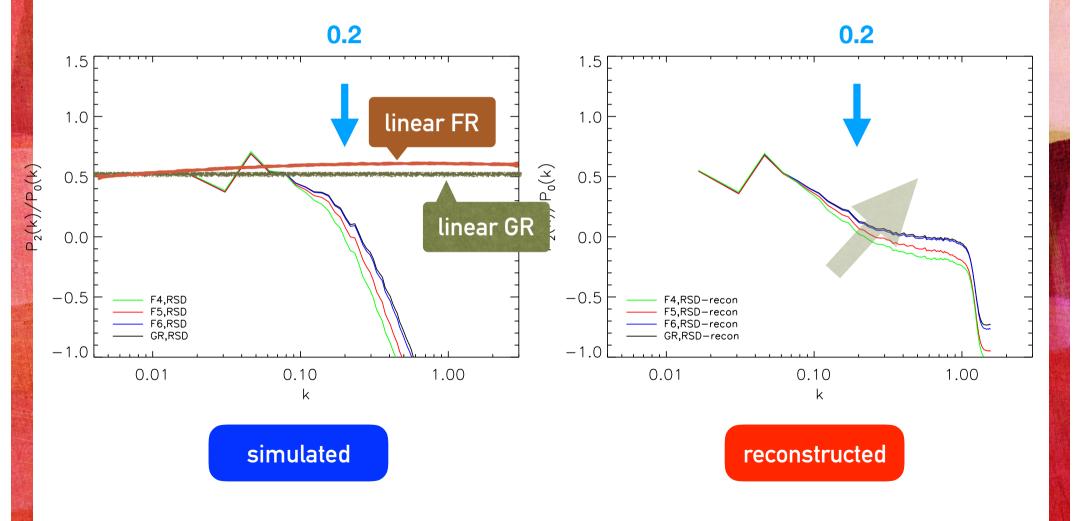
► l=0, 2, 4 (monopole, quadrupole, hexadecapole)

$$\begin{pmatrix} P_0(k) \\ P_2(k) \\ P_4(k) \end{pmatrix} = P_{\delta\delta}(k) \begin{pmatrix} 1 + \frac{2}{3}\beta + \frac{1}{5}\beta^2 \\ \frac{4}{3}\beta + \frac{4}{7}\beta^2 \\ \frac{8}{35}\beta^2 \end{pmatrix}$$

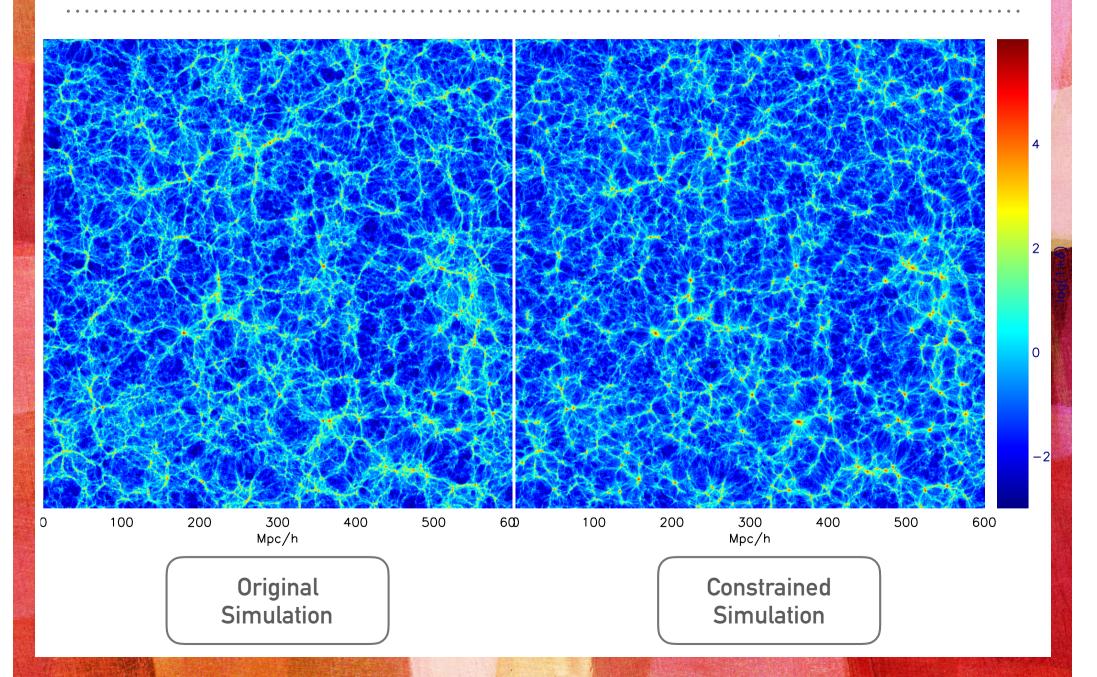
 $P_2(k)/P_0(k) -> \beta$

Multipole moments ratio

P₂(k)/P₀(k)



Constrained simulation

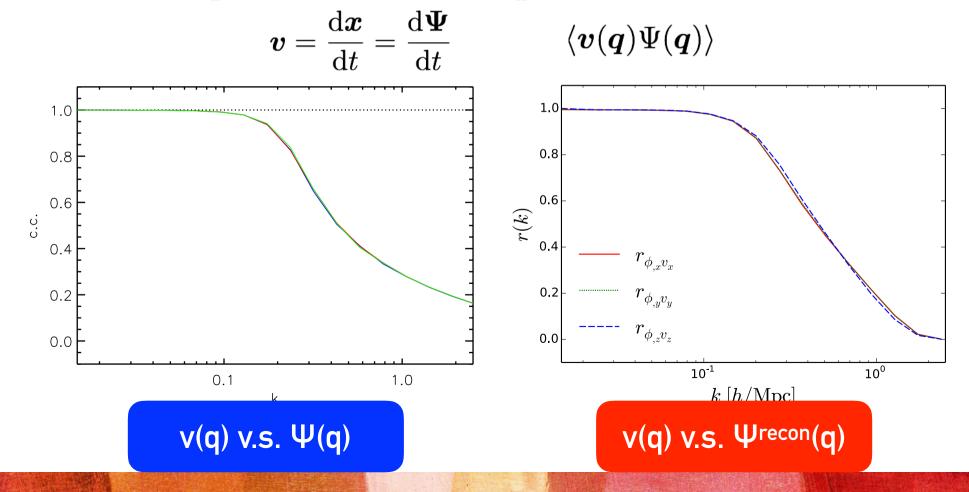


Velocity reconstruction

Standard method: linear continuity equation

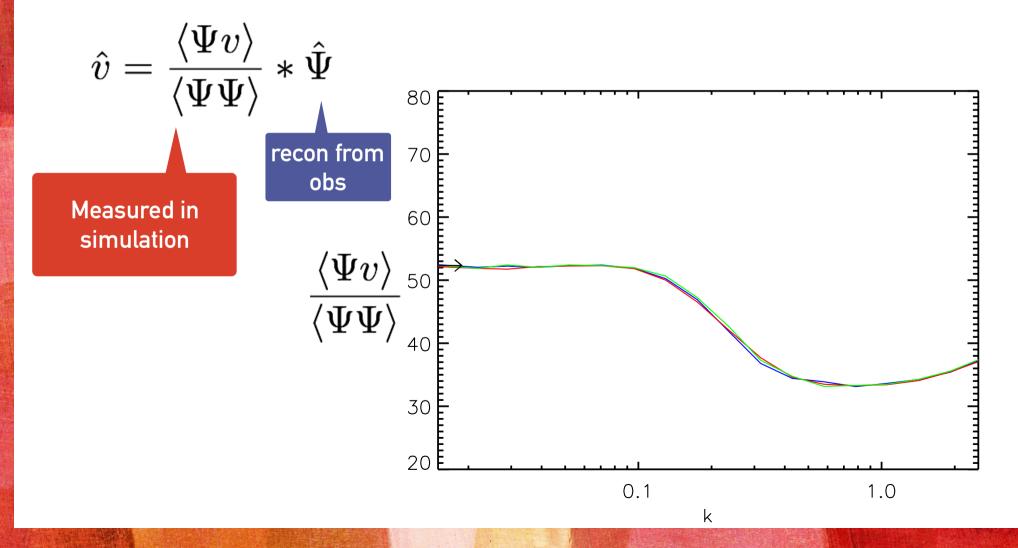
$$oldsymbol{v}(oldsymbol{k}) = aHfrac{ioldsymbol{k}}{k^2}rac{\delta_S(oldsymbol{k})}{b}$$

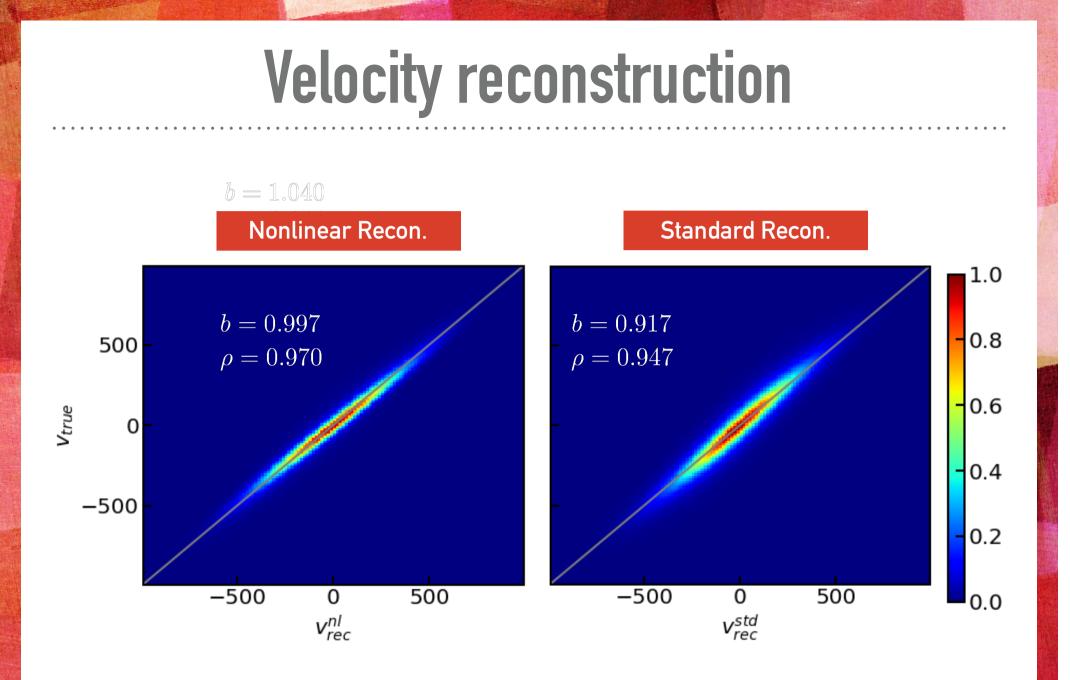
► Our attempts: relation with displacement



Velocity reconstruction

Use the relation (transfer function) to convert the reconstructed displacement to the reconstructed velocity field.





Conclusion

Nonlinear reconstruction is useful in

- extracting BAO signal in low-redshift high-density survey
- ► recovering more linear RSD effect

To explore

- ➤ Applying to real data (SDSS MGS, DESI BGS, 21cm IM, etc)
- improvement in differing gravity models ?
 - ► theoretical supporting for NR ?
 - ► quantification ($f\sigma_8$)
- ► reconstruction of the initial condition (v.s. HMC)
- velocity reconstruction performance ? (v.s. linear continuity equation)

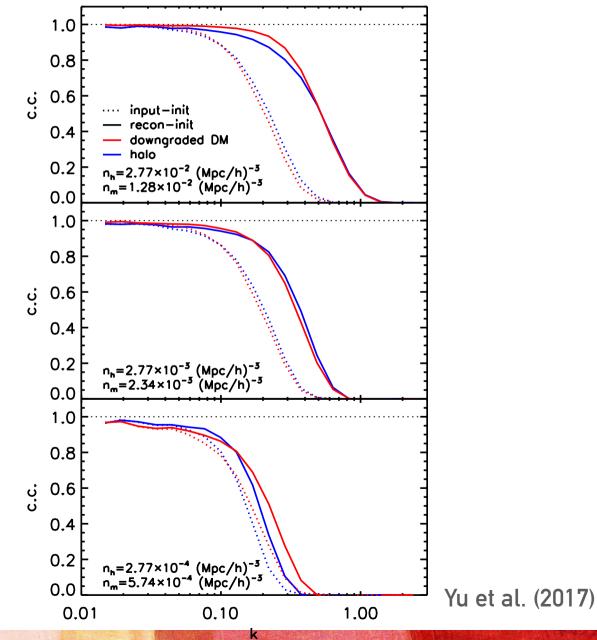
correspondence to halo displacement ?

THANK YOU

ご清聴ありがとうございました

halo v.s. downgraded DM

- \succ n_m=b²n_h
- This downgraded DM sample shares the same effective shot noise as the halo sample
- This result tells us that the main limitation comes from the shotnoise.



modeling of the power spectrum shape by transfer functions

