

### Efficient Optimal Reconstruction of Cosmological Density Fields

#### Benjamin Horowitz (UC Berkeley, NSF Graduate Research Fellow) Accelerating Universe in the Dark





### Linear

### Nonlinear

.

### Linear Nonlinear







#### EUCLID



.

#### A Wealth of Information in the Beyond the Power Spectra: Motivating Example



### Weak Lensing

### Lyman Alpha Tomography





#### Uros Seljak and Grigor Aslanyan (UC Berkeley)

#### K.G. Lee (IPMU) + CLAMATO Collaboration

arXiv:1810:00503

arXiv:190?:???

### Notation



### Toy Example: Signal Field Linear Density Field (64x64)



#### Response R=1

### + Noise



**Anisotropic Noise** 

Mask Horowitz et al. (2018)

### **Data Field**



Data Field Field + Noise/Mask

**Signal Field** 

Horowitz et al. (2018)

### Simple solution: Wiener Filter

## Minimum variance estimator $\mathbf{\hat{s}} = \mathbf{SR}^{\dagger}\mathbf{C}^{-1}\mathbf{d}$

Covariances

$$\mathbf{S} = \left\langle \mathbf{s}\mathbf{s}^{\dagger} \right\rangle \quad \mathbf{N} = \left\langle \mathbf{n}\mathbf{n}^{\dagger} \right\rangle$$
$$\mathbf{C} \equiv \left\langle \mathbf{d}\mathbf{d}^{\dagger} \right\rangle = \mathbf{R}\mathbf{S}\mathbf{R}^{\dagger} + \mathbf{N}$$
Size: (64 x 64)<sup>2</sup>

Rybicki and Press (1992) Seljak (1997,1998)

### Wiener Filter (64x64)

![](_page_10_Figure_1.jpeg)

**Observed "Data" Field + Noise + Mask** 

Wiener Filtered  $\mathbf{\hat{s}} = \mathbf{S} \mathbf{R}^{\dagger} \mathbf{C}^{-1} \mathbf{d}$ 

### Going to Smaller Scales

Smaller scales requires higher resolution -> larger covariance matrix

$$\mathbf{\hat{s}} = \mathbf{SR}^{\dagger}\mathbf{C}^{-1}\mathbf{d}$$
$$\mathbf{C} \equiv \langle \mathbf{dd}^{\dagger} \rangle = \mathbf{RSR}^{\dagger} + \mathbf{N}$$

 $\mathbf{N}=\left\langle \mathbf{nn}^{\dagger}
ight
angle$  (Approximately diagonal in real space)

 $\mathbf{S}=\left\langle \mathbf{s}\mathbf{s}^{\dagger}
ight
angle$  (Approximately diagonal in Fourier space)

Inverting generic matrices is hard work! (Best case O(n^3))

Optimize instead!  $\chi^2 = s^{\dagger} S^{-1} s + (d - Rs)^{\dagger} N^{-1} (d - Rs)$ 

![](_page_12_Figure_0.jpeg)

**Maximum Likelihood** 

Horowitz et al. (2018)

Wiener Filtered  $\mathbf{\hat{s}} = \mathbf{S} \mathbf{R}^{\dagger} \mathbf{C}^{-1} \mathbf{d}$ 

![](_page_13_Figure_0.jpeg)

#### Jain, Seljak, White (1999) Nontrivial Response Matrix: Weak Lensing

• The signal is still a density field, but the data is now 2 images of different shear components from the lensing.

![](_page_14_Figure_2.jpeg)

Generates pure E modes (curl free)

### In addition... B-Modes!

![](_page_15_Figure_1.jpeg)

### In addition... B-Modes!

Systematic effects from instrument/processing pipeline

"Physical" effects: Clustering in Redshift Space (Schneider et al. 2001), Intrinsic Alignments (Hirata and Seljak 2004), etc.

d R birectly related  

$$\begin{bmatrix} \gamma_1 \\ \gamma_2 \end{bmatrix} = \begin{bmatrix} (\partial_x^2 - \partial_y^2) & -2\partial_x \partial_y \\ 2\partial_x \partial_y & (\partial_x^2 - \partial_y^2) \end{bmatrix} \begin{bmatrix} \phi_E \\ \phi_B \end{bmatrix} + \text{Noise}$$

Approach is directly transferable to CMB polarization (Q/U)

Lanusse et al (2016)

Kaiser, Squires (1992)

### **Kaiser-Squires**

Shear relates to Convergence by:

 $\tilde{\gamma} = \tilde{\mathbf{A}}\tilde{\kappa}$ 

$$\begin{bmatrix} \tilde{\mathbf{A}}^{-1} \end{bmatrix}_{ij} = \frac{k_{1,i}^2 - k_{2,i}^2 - 2ik_{1,i}k_{2,i}}{k_{1,i}^2 + k_{2,i}^2} \delta_{ij}$$

![](_page_17_Figure_6.jpeg)

Jeffrey et al (2018)

### **Kaiser-Squires**

![](_page_18_Figure_2.jpeg)

(Mock DES data)

![](_page_19_Figure_0.jpeg)

(has PS of E, but 10<sup>-5</sup> times amplitude)

250 Mpc/h

![](_page_20_Figure_0.jpeg)

![](_page_21_Picture_0.jpeg)

### Kaiser Squires

![](_page_21_Picture_2.jpeg)

### Reconstructed E Potential (Density)

![](_page_22_Picture_1.jpeg)

![](_page_23_Figure_0.jpeg)

~1 minute

![](_page_24_Picture_0.jpeg)

### Initial Density Reconstruction from Lyman Alpha Forest Tomography

### Lyman-α Forest as Probe of z > 2 Universe

![](_page_25_Picture_1.jpeg)

![](_page_25_Figure_2.jpeg)

**COSMOS Lyman-Alpha Mapping And Tomography Observations** 

### **CLAMATO Survey**

![](_page_26_Figure_2.jpeg)

Volume: ~ 3.15 ×10<sup>5</sup> h<sup>-3</sup> Mpc<sup>3</sup>

Lee et al (2017)

![](_page_27_Picture_0.jpeg)

Lee et al (2016)

### **CLAMATO Survey**

![](_page_28_Figure_1.jpeg)

#### Lee et al (2014)

### Initial Density Reconstruction

Reconstruct the initial ( $z \sim 100$ ) matter distribution to give rise to the observed structures.

- Easy to extract cosmological information from early time maps (i.e. BAO reconstruction).
- Will allow us to reconstruct more accurate z~2 density maps.
- All us to infer the z=0 fate of structures.

preliminary

TARDIS: Tomographic Absorption Reconstruction and Density Inference Scheme

![](_page_30_Figure_0.jpeg)

### **Evolution w/ FastPM**

Initial Density

z=2 Density Field

![](_page_31_Figure_3.jpeg)

(Planck 2015 Cosmology)

FastPM: Feng et al. (2016)

Side length: 45 Mpc h<sup>-1</sup> **Resolution: 128<sup>3</sup> Particles Periodic Boundary Conditions** 

#### Flux with Fluctuating Gunn-**Peterson Approximation** Flux

z=2 Density Field

![](_page_32_Picture_2.jpeg)

![](_page_32_Figure_3.jpeg)

(Planck 2015 Cosmology)

FastPM: Feng et al. (2016)

### Sight-lines Selection

![](_page_33_Figure_1.jpeg)

### Configuration: Subaru Prime Focus Spectrograph

![](_page_34_Picture_1.jpeg)

| Name  | N-body | $\frac{\textbf{Sight-line}}{(\text{Mpc}/h)^{-2}}$ | $\mathbf{SNR}_{min}$ | $\mathbf{SNR}_{max}$ | ${f Volume}\ ({ m Mpc}/h)^3$ | Particles |
|-------|--------|---------------------------------------------------|----------------------|----------------------|------------------------------|-----------|
| F-PFS | FastPM | 0.5                                               | 2.4                  | 5.0                  | $64^{3}$                     | $128^{3}$ |

### Optimization (xy-slice)

Initial Density Field

![](_page_35_Picture_2.jpeg)

#### **Converged Solution - Iteration IDF**

![](_page_35_Picture_4.jpeg)

#### z=2 Density Field

![](_page_35_Picture_6.jpeg)

![](_page_36_Figure_0.jpeg)

### Results : Initial Density (z~100) x-z plane

True Initial Density Field

![](_page_37_Figure_2.jpeg)

Reconstructed Initial Density Field

### Velocity Results : x-z plane

![](_page_38_Figure_1.jpeg)

• Velocity information is not normally reconstructed!

### z~2 Density Results : x-z plane

True z=2.5 Density

Reconstructed z=2.5 Density

![](_page_39_Figure_3.jpeg)

Cosmic web is well reconstructed, but some bias in high mass regions.

![](_page_40_Picture_0.jpeg)

True z=0 Density

Reconstructed z=0 Density

![](_page_40_Figure_3.jpeg)

### reliminary z=0 Forecasted Reconstructions

![](_page_41_Figure_1.jpeg)

#### **Subaru Prime Focus Camera**

Dark Energy Spectroscopic Instrument

![](_page_41_Figure_4.jpeg)

![](_page_41_Figure_5.jpeg)

### Halo Structure Reconstruction

![](_page_42_Figure_1.jpeg)

• Inference the late time fate of cosmic structures.

For ~TMT Noise Levels

### Summary

![](_page_43_Picture_1.jpeg)

- It is possible to optimally reconstruct signal fields even with very complicated responses (such as gravitational evolution) and over wide survey volumes.
- Tools are being developed in time for next generation surveys which will no longer be statistics limited!

### **Backup Slides**

![](_page_44_Picture_1.jpeg)

Optimization for Summary Statistics

![](_page_46_Picture_1.jpeg)

Power spectrum of minimum variance map isn't necessarily the most likely power spectrum.

![](_page_47_Picture_1.jpeg)

Power spectrum of minimum variance map isn't necessarily the most likely power spectrum.

![](_page_48_Figure_1.jpeg)

### Power Spectrum Estimation: Noise Bias

Inject additional noise,  $\mathbf{d}_n$ , and then rerun optimization  $\hat{\mathbf{s}}_n$ 

![](_page_49_Figure_2.jpeg)

![](_page_50_Picture_1.jpeg)

Mask geometry can induce correlations between modes or suppression of certain modes

### Power Spectrum Estimation: Fisher Matrix

Central Limit Theorem! For each band power there are many modes sampled, so the posterior for each band power should be Gaussian.

![](_page_51_Picture_2.jpeg)

### Power Spectrum Estimation: Fisher Matrix

Inject additional signal,  $\Delta s_{l'}$ , to bin l' and optimize to get  $\hat{s}_{l'}$ 

![](_page_52_Figure_2.jpeg)

#### (Exaggerated Cartoon)

### Power Spectrum Estimation: Fisher Matrix

Inject additional signal,  $\Delta s_{l'}$ , to bin l' and optimize to get  $\hat{s}_{l'}$ 

![](_page_53_Figure_2.jpeg)

![](_page_54_Figure_0.jpeg)

### **Fisher Matrix**

![](_page_55_Figure_1.jpeg)

![](_page_56_Figure_0.jpeg)

### Take-aways

- It is possible to optimally reconstruct large maps in short time even with non-trivial noise, response matrix, and mask properties.
- Power-spectrum estimation is straightforward and optimal.
- Framework is extremely flexible and can be applied to many other observables.
   (Ask me later if interested in CMB reconstruction!)

# z~0 Cosmic Web Structure

![](_page_58_Figure_1.jpeg)

![](_page_59_Picture_0.jpeg)

### Kaiser Squires

![](_page_59_Picture_2.jpeg)

### Optimization over Initial Density Fields: Other Methods

(For nonlinear density only reconstruction)

![](_page_60_Figure_2.jpeg)

Very high dimensional parameter space; sampling is very costly computationally... Seljak et al. (2017)

# Density of galaxies in COSMOS Field

![](_page_61_Figure_1.jpeg)

Slide from KG Lee