Towards the analysis of the redshift-space bispectrum

Naonori Sugiyama

Collaborators: Shun Saito, Florian Beutler and Hee-Jong Seo

• K A V L I PMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

Accelerating Universe in the Dark @ Yukawa Institute (Match 4-8, 2019)

What can we know from the Large scale structure?

- Dark energy
- Modified gravity
- Neutrino

3D galaxy map

3D galaxy map

65 **Two-point statistics**

40

20h

Sloan Digital Sky Survey

50

u8

Anisotropic signals

Redshift space distortions

= z

 $z_{\rm obs}$

What we observe:
1) right ascension
2) declination
3) redshift

Alcock-Paczyn'ski effect

Radial distance

Anisotropic signals

What we observe: 1) right ascension 2) declination 3) redshift

The anisotropic signal provides additional information, velocity field and Hubble parameter beyond spherically averaged measurements.

SDSS DR12 BOSS (2016)

Dard energy: $w = -1.01 \pm 0.06$

12h

u8

Growth rate(z=0.5): 0.452 ± 0.058

Total neutrino mass: $< 0.16 \,\mathrm{eV}/c^2$

Consistent with LCDM. Strong upper limit on total neutrino mass.

40

A0,9

Next Generation Galaxy Surveys

SuMIRe HSC/PFS (2015-25)

DESI (4m, LBL, 2020-) LSST (6.5m, SLAC, 2022-)

Euclid (ESA, 2022-)

WFIRST (NASA,2025-)

Limitation of two-point statistics

Towards full information extraction

40

Sloan Digital Sky Survey

History

Angular catalogues: Peebles & Groth (1975)

Groth & Peebles (1977); Fry & Slender (1982)

Spectroscopic surveys in configuration-space

Kayo et al. (2004);

Jing & Boerner (2004); Wang et al. (2004); Gaztanaga et al. (2005); Nichol et al. (2006); Kulkarni et al. (2007); Gaztanaga et al. (2007); McBride et al. (2011a, b); Marin (2011); Marin et al. (2013); Guo et al. (2013); Slepian et al. (2017a,b);

Spectroscopic surveys in Fourier-space

Scoccimarro et al. 2001; Feldman et al. 2001; Verde et al. 2002; Gil-Marin et al. 2015a,b;

Gil-Marin et al. 2017 (SDSS BOSS analysis)

Pearson & Samushia 2017;

Joint analysis of P + B will become the standard method for future galaxy surveys.

Is there anything else we should do?

Anisotropic bispectrum analysis has not been done yet.

Bispectrum Project

[1] NS, Saito, Beutler and Seo 2018

- A new decomposition formalism
- Detection of the quadrupole bispectrum (14 σ)

[2] In progress

- Modeling the bispectrum
- Modeling the bispectrum covariance
- Fisher analysis

[3] Future works

Analysis using BOSS data

Final goal

Applying the pipeline to future galaxy surveys, PFS

Decomposition formalism $B(k_1, k_2, \hat{n})$ Wavevectors Line-of-sight k1 is the z-axis LOS is the z-axis $B = B^m_{\ell_1 \ell_2} Y^m_{\ell_1}(\hat{k}_1) Y^{m*}_{\ell_2}(\hat{k}_2)$ $B = B_{LM} Y_{LM}(\hat{n})$ (1) $\vec{k_2}$ \hat{y} φ_{12}

Scoccimarro et al. (1999)

Slepian et al. (2017)

New decomposition formalism not depending on coordinate systems

1)Expand the bispectrum in three spherical harmonics

$$\begin{split} B_{\ell_1\ell_2L}^{m_1m_2M}(k_1,k_2) &= N_{\ell_1\ell_2L} \int \frac{d^2\hat{k}_1}{4\pi} \int \frac{d^2\hat{k}_2}{4\pi} \int \frac{d^2\hat{n}}{4\pi} \\ &\times y_{\ell_1}^{m_1*}(\hat{k}_1) y_{\ell_2}^{m_2*}(\hat{k}_2) y_L^{M*}(\hat{n}) B(k_1,k_2,\hat{n}), \end{split}$$

2) Sum up over all m-modeswith wigner 3j symbol.

$$B_{\ell_1\ell_2L}(k_1,k_2) \propto \sum_{m_1m_2m_3} \left(\begin{smallmatrix} \ell_1 & \ell_2 & \ell_3 \\ m_1 & m_2 & m_3 \end{smallmatrix} \right) B_{\ell_1\ell_2L}^{m_1m_2M}(k_1,k_2)$$

3) Restrict the allowed multipoles to I1+I2+L=even

New Bispectrum Multipoles

Three multipole indexes Two wavenumber

Measurements of Monopole (L=0) (k1 = k2)

Quadrupole (L=2) and Hexadecapole (L=4)

How do anisotropic bispectrum measurements improve constraints on cosmological parameters? (Preliminary results)

Fisher analysis

Correct error estimates [non-Gaussian covariance]

Correct theoretical model

Importance of Non-Gaussian errors

Non-Gaussian covariance

P-P covariance -> tri-spectrum P-B covariance -> 5-point spectrum B-B covariance -> 6-point spectrum

RSD + linear bias + shot noise

Cov [PO, PO]

Cov [PO, B000]

Cov [B000, B000]

Bispectrum model

We need the model that explains the anisotropic galaxy power spectrum and bispectrum simultaneously.

Non-linear clustering Non-linear RSDs Non-linear bias

Bispectrum model

We need the model that explains the anisotropic (2003) wer spectrum and bispectrum nultaneously.

Non-Imar clustering
 Non-linear RSDs
 Non-linear bias

Bispectrum model

Power spectrum and bispectrum: tree-level solution + finger-of-god _____non-linear RSDs + local bias (b1, b2) ____non-linear bias + residual shot-noise terms

PFS Project (0.6 < z < 2.2)

Bispectrum Project

[1] NS, Saito, Beutler and Seo 2018

- A new decomposition formalism
- Detection of the quadrupole bispectrum (14 σ)

This talk

[2] In progress

- Modeling the bispectrum covariance
- Fisher analysis
- Modeling the anisotropic bispectrum

[3] Future works

Analysis using BOSS data

Final goal

Applying to future galaxy surveys, PFS