Accelerating Universe in the Dark - 2019.3.6 - Kyoto

Effect of astrophysics on the large-scale clustering of HI

arXiv:1808.01116

<u>Rika Ando</u>¹

Collaborators: Atsushi J Nishizawa¹ Kenji Hasegawa¹ Ikkoh Shimizu² Kentaro Nagamine²

¹Nagoya University, ²Osaka University

Accelerating Universe in the Dark - 2019.3.6 - Kyoto

Effect of astrophysics on the large-scale clustering of HI

arXiv:1808.01116

<u>Rika Ando</u>1

Collaborators: Atsushi J Nishizawa¹ Kenji Hasegawa¹ Ikkoh Shimizu² Kentaro Nagamine²

¹Nagoya University, ²Osaka University

Contents

RSD of HI gas with hydrodynamic simulations arXiv:1808.01116

I. Introduction

- galaxy survey
- 21 cm line intensity mapping

2. HI bias

- BAO peak scale
- scale dependence

3. Redshift space distortion of HI

- theoretical model
- measure using simulation data

4. Summary

accelerating expansion and LSS

→ power spectrum, correlation function, BAO, RSD ...

Neutral hydrogen as a new tracer of dark matter

21cm line intensity mapping

- wide area
- wide range of redshift

previous study Bull et al. 2015

forecast the constraint on the cosmological parameter by SKA

strong constraint on the dark energy is expected by 21 cm line intensity mapping

EoS of DE $p_{de} = w \rho_{de}$ $w = w_0 + (1 - a) w_a$

previous study and this work

previous study Sarkar et al. 2016, 2018

semi-numerical simulation to model the HI distribution

previous study and this work

previous study Sarkar et al. 2016, 2018

semi-numerical simulation to model the HI distribution

this work

Intro

using cosmological hydrodynamic simulation

construct theoretical model based more on reality

two cosmological hydrodynamic simulations

investigate the impact of the uncertainties about small-scale astrophysics on the large-scale clustering of HI

including different small-scale astrophysics

(e.g. Star formation, SNe and AGN feedback)

Illustris simulation

Osaka simulation

moving mesh code AREPO

Box size : (75 cMpc/h)³

Particle number : 2*455³

Strong AGN feedback

Intro

N-body/SPH code Gadget-3 (Springel 2005)

Box size : (85 cMpc/h)³

Particle number : 2*512³

No AGN feedback

particle mass $[M_{sun}/h]$ DM : ~6*10⁷, bar

arXiv:1808.01116

Vogelsberger et al. (2014), Nelson et al. (2015)

baryon : ~3*10⁸

Aoyama et al. 2017, Shímízu et al. 2019

this work: HI bias

RSD of HI gas with hydrodynamic simulations arXiv:1808.01116

- I. Introduction
 - galaxy survey
 - 21 cm line intensity mapping

2. HI bias

- BAO peak scale
- scale dependence
- 3. Redshift space distortion of HI
 - theoretical model
 - measure using simulation data

4. Summary

bias b(k) affect the BAO peak scale

measured BAO peak scale deviates from

the BAO scale of dark matter predicted by linear theory

- non-linear effect
- scale dependent bias

 $\delta_{\rm HI} = b_{\rm HI}(k) \, \delta_{\rm m}$

HI bias arXiv:1808.01116

scale & redshift dependence of HI bias

21cm line is a biased tracer of matter distribution

measure and model the HI bias in real space

at 1<z<5 using the two simulations

$$b(k) = \frac{P_{\rm HI-m}}{P_{\rm m}} \quad \text{HI-matter cross-correlation}$$

HI bias $P_{\rm m}$ matter auto-correlation

HI bias

result: HI bias

symbol: simulation data curve: b₀+b₁k

 $\frac{k_{\rm max}^2}{6\pi^2} \int_0^{k_{\rm max}} dk \, P^{\rm lin}(k,z) = C \sim 0.7$

10/17

result: HI bias

symbol: simulation data curve: b₀+b₁k

scale dependence & astrophysical effect

filled: Illustris (w/ AGN)
open: Osaka (w/o AGN)

We find

- the scale dependence of HI bias at z > 3 (e.g. k<0.5 h/Mpc @ z=3)
- weak effect of the small-scale astrophysics on large-scale HI bias

(e.g.star formation, SNe, AGN)

HI bias arXiv:18

this work: Redshift space distortion

RSD of HI gas with hydrodynamic simulations

I. Introduction

arXiv:1808.01116

- galaxy survey
- 21 cm line intensity mapping
- 2. HI bias
 - BAO peak scale
 - scale dependence

3. Redshift space distortion of HI

- theoretical model
- measure using simulation data

4. Summary

construct the RSD model for HI

Peculiar velocity affects only the distance

along the line of sight

$$(s_1, s_2, s_3) = \left(x_1, x_2, x_3 + \frac{v_3}{aH}\right)$$

position inposition ineffect of theredshift spacereal spacepeculiar velocity

BUT

We have no theoretical model for RSD of HI

Exploring a RSD model applicable to HI

theoretical model of RSD

 $\mu = k_{\parallel}/k = \cos \theta$ $\beta = f/b_{\rm HI}$ f: 線形成長率

anisotropic power spectrum in redshift space

best-fitted value: HI bias 👩

constant

$$P_{\rm HI}(k,\mu) = W_{\rm beam}^2(k,\mu) \, e^{-(k\mu f\sigma_v)^2} \, b_{\rm HI}^2 (1 + \frac{f}{b_{\rm HI}} \mu^2)^2 \, P_{\rm m}(k) + \text{TNS compared}$$

+ TNS correction term

Taruya et al. 2010

arXiv:1808.01116

RSD

OT

best-fitted value: HI bias constant $P_{\rm HI}(k,\mu) = W_{\rm beam}^2(k,\mu) \ e^{-(k\mu f\sigma_v)^2} \ b_{\rm HI}^2 (1 + \frac{f}{b_{\rm HI}} \mu^2)^2 \ P_{\rm m}(k)$ + TNS correction term Taruya et al. 2010 5.0 ▼- P_{HI-dm}/P_{dm} in real space (this work) (this work) 4.5PHI-dm/Pdm in real space(previous work) 4.0 using Mhalo-MHI model 3.5 Sarkar et al. 2018 TNS model can estimate HI bias accurately ° 3.0 2.5 2.0 1.5 1.0 1.5 2.5 3.0 4.0 2.0 3.5 4.55.0 1.0 redshift

summary

aim: construct theoretical model for HI clustering

method: measure HI bias & RSD of HI

using two cosmological hydrodynamic simulations

result: direct measurement of HI bias in real space

- scale dependence (at z>3)
- weak effect of uncertainty about <u>small-scale astrophysics</u>
 e.g. star formation, SNe, AGN feedback

result: redshift space distortion of HI

- theoretical model (TNS) for galaxy survey could be applied to HI
- investigation of relationship between halo and HI mass is necessary