KiDS+VIKING-450: Cosmic shear tomography with optical+infrared data

Hendrik Hildebrandt - Ruhr-Universität Bochum on behalf of the KiDS collaboration 7th March 2019

European Research Council

Established by the European Commission

Cosmic shear

Sensitive to:

- Matter distribution
- Geometry

Observables:

- Ellipticities
- Photo-z

Statistical measurement of many galaxies

Wittman et al. (2000)

2pt shear correlation functions

Very directly related to the matter power spectrum P_{δ} .

Observation -> theory

 $\left(\xi_{\pm}(\theta) = \left\langle \gamma_{t}\gamma_{t}\right\rangle(\theta) \pm \left\langle \gamma_{X}\gamma_{X}\right\rangle(\theta)\right)$

$$\begin{aligned} \xi_{+}(\theta) &= \int_{0}^{\infty} \frac{\mathrm{d}\ell\,\ell}{2\pi} \,\mathrm{J}_{0}(\ell\theta) \,P_{\kappa}(\ell) \;; \; \; \xi_{-}(\theta) = \int_{0}^{\infty} \frac{\mathrm{d}\ell\,\ell}{2\pi} \,\mathrm{J}_{4}(\ell\theta) \,P_{\kappa}(\ell) \\ P_{\kappa}(\ell) &= \frac{9H_{0}^{4}\Omega_{\mathrm{m}}^{2}}{4c^{4}} \,\int_{0}^{\chi_{\mathrm{h}}} \mathrm{d}\chi \frac{g^{2}(\chi)}{a^{2}(\chi)} P_{\delta}\left(\frac{\ell}{f_{K}(\chi)},\chi\right) \\ g(\chi) &= \int_{\chi}^{\chi_{\mathrm{h}}} \mathrm{d}\chi' \left(p_{\chi}(\chi') \frac{f_{K}(\chi'-\chi)}{f_{K}(\chi')}\right) \end{aligned}$$

flat ΛCDM

 Measure amount of clustered matter

$$S_8 = \sigma_8 (\Omega_m / 0.3)^{0.5}$$

S₈ results over the years

Systematic errors

Shapes measurement systematics:

- PSF residuals
- B modes
- Multiplicative and additive biases

Photo-z systematics:

- Calibration sample and technique
- Inhomogeneous multi-band data
- Theoretical "systematics":
 - Intrinsic alignments
 - Baryon feedback
 - Neutrinos
 - WDM
- Psychological systematics:
 - Blinding

Intrinsic galaxy (shape unknown)

Gravitational lensing Ati causes a shear (g)

Atmosphere and telescope cause a convolution

Detectors measure a pixelated image

HSC: Hyper-Suprime Cam Survey

KiDS: Kilo Degree Survey

DES: Dark Energy Survey

KiDS vs. HSC vs. DES

	KiDS+VIKING	HSC	DES
Mirror [m]	2.6 + 3.9	8.2	4.0
Focus (optical)	Cassegrain	Prime	Prime
FOV [deg ²]	1.0	1.8	3.0
Area [deg ²]	1350	1400	5000
Filters	u gri+ZY JHKs	grizy	griz(y)
Seeing [arcsec]	0.7	0.6	0.9
Source density [gal/arcmin ²]	~9	~22	~7
Depth	<i>r</i> ~24	<i>i~</i> 24.5	<i>r</i> ~23.5

KiDS

- 1350deg² survey
- VLT Survey Telescope (VST)
- Four optical bands: ugri
- Shapes down to r~24
- ~8.5 gal/arcmin²

VIKING@VISTA

- Same footprint as KiDS.
- Already finished (1350deg²).
- ZYJHKs images.

• 5σ depths of 21.2 (*K*_s) to 23.1 (*Z*).

KiDS-VIKING 450

- Same source catalogue as KiDS-450.
- Add VIKING ZYJHK_s-bands to KiDS-450 ugri-bands.
 => Improved photo-z.
- Define five new tomographic bins ($0.1 < z_{phot} < 1.2$).
- Leverage large-area spec-z surveys for CC.
- Include a lot of lessons learned in the last couple of years.
- Expectation: More precise and systematically more robust cosmological results.

RA (deg)

Benefits of NIR

Wright et al. (2018)

Tomographic bins

Wright et al. (2018)

2-point shear corr. fct.

Hildebrandt et al. (2018)

Spec-z calibration sample

Survey	Area	No. of	<i>z</i> -max	<i>r</i> _{lim}	Used for
	$[deg^2]$	spec-z			
SDSS*	119.2	15564	0.7		CC/OQE
GAMA*	75.9	79756	0.4	19.8	CC/OQE
2dFLenS*	61.2	3914	0.8		CC/OQE
WiggleZ*	60.1	19968	1.1		CC/OQE
zCOSMOS	0.7	9930	1.0	24	CC/DIR
DEEP2	0.8	6919	1.5	24.5	CC/DIR
VVDS*	1.0	4688	1.3	25	CC/DIR
G15Deep*	1.0	1792	0.7	22	DIR
CDFS	0.1	2044	1.4	25	DIR

Direct photo-z calibration

- Re-weight spec-z surveys to be more representative (Lima et al. 2008)
- Only works if:
 - Magnitude space is fully covered (r<~24; C3R2).
 - Unique relation between magnitudes and redshifts (VIKING).

KV450 - *n(z)*

KV450 - *n(z)*

Tomographic bins

Bin	z _B range	No. of	$n_{\rm eff}~{ m H12}$	σ_ϵ	$\langle z_{\rm DIR} \rangle$
		objects	$[\operatorname{arcmin}^{-2}]$		
1	$0.1 < z_{\rm B} \le 0.3$	1253582	0.88	0.282	0.399 ± 0.039
2	$0.3 < z_{\rm B} \le 0.5$	1985201	1.33	0.281	0.490 ± 0.023
3	$0.5 < z_{\rm B} \le 0.7$	3450970	2.04	0.291	0.669 ± 0.026
4	$0.7 < z_{\rm B} \le 0.9$	2792105	1.49	0.287	0.834 ± 0.012
5	$0.9 < z_{\rm B} \le 1.2$	2444597	1.26	0.297	1.002 ± 0.011
all	$0.1 < z_{\rm B} \le 1.2$	11926455	6.93	0.288	0.713 ± 0.027

KV450 clustering-z

Hildebrandt et al. (2018)

KV450 n(z)

KV450 shear ratio test

GAMA lenses, KV450 sources, $\chi^2/dof=1.05$, p=35.3%

Hildebrandt et al. (2018)

S₈ posterior

Hildebrandt et al. (2018)

KV450 other improvements

- Covariance with more realistic shape noise -> better χ^2
- More realistic image simulations
- New priors for IA and baryon feedback
- Pre-defined data splits (à la Efstathiou & Lemos 2018)

KiDS-1000

- More than 1000deg² released to ESO.
- Improved 9-band photometry.
- Running new lensfit version. Calibration with **KiDZ**.
- 3x2 point cosmological analysis.

Summary & Outlook

- Added VIKING NIR data to KiDS optical data.
- More robust analysis with extensive spec-z calibration.
- Tension with Planck persists in KiDS+VIKING-450.
 Systematics? New physics? Evolving dark energy?
- Indications for bias through COSMOS-2015 photo-z.
- Very exciting times: Work started on 1000deg² analyses. Survey completion (1350deg²) in spring 2019.
 Perfect dress-rehearsal for Euclid.

Survey progress as of today

