# Weak Lensing, the tSZ Effect, and Deep Learning

Tilman Tröster Institute for Astronomy, University of Edinburgh

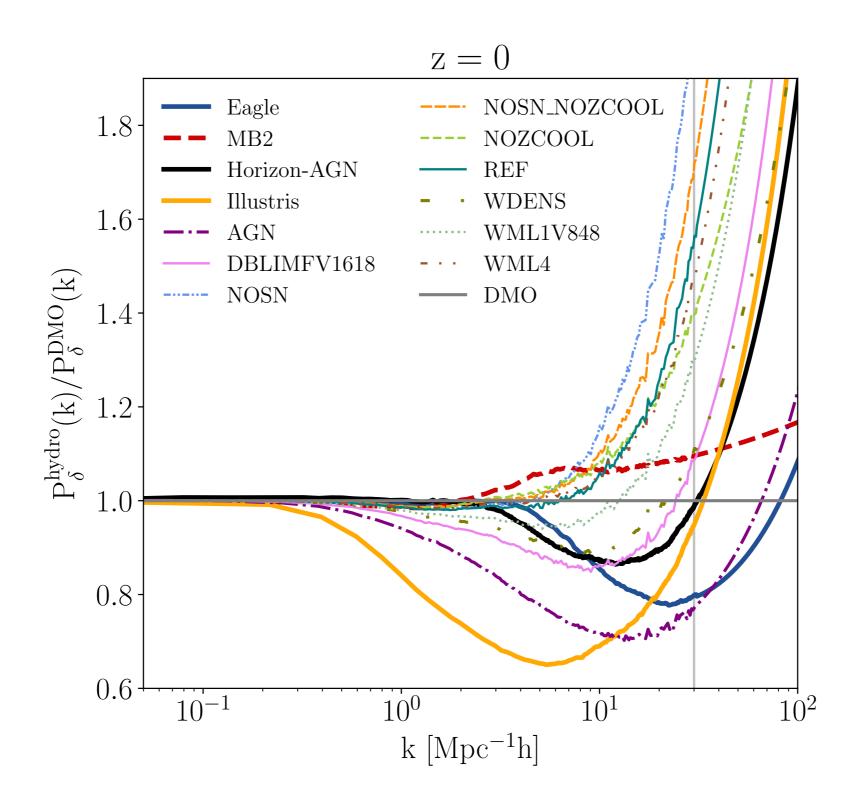
Accelerating Universe in the Dark, Kyoto, 7 March, 2019

## Weak lensing

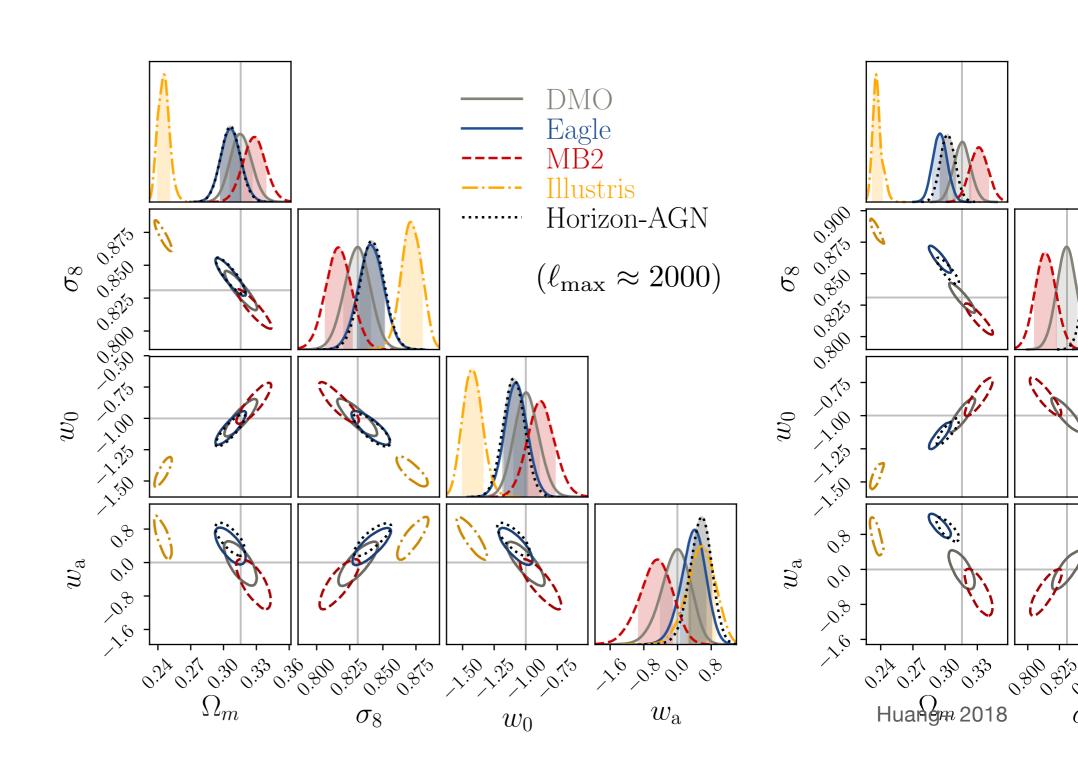
#### Weak lensing probes the total matter distribution

- ~80% of matter is dark matter
- ~20% is baryons
- If we want to constrain \(\Lambda\text{CDM}\), we need to understand the 20% of baryons
- Baryons are complicated!

#### Effect of baryons on the matter power spectrum



## Effect on cosmological parameters

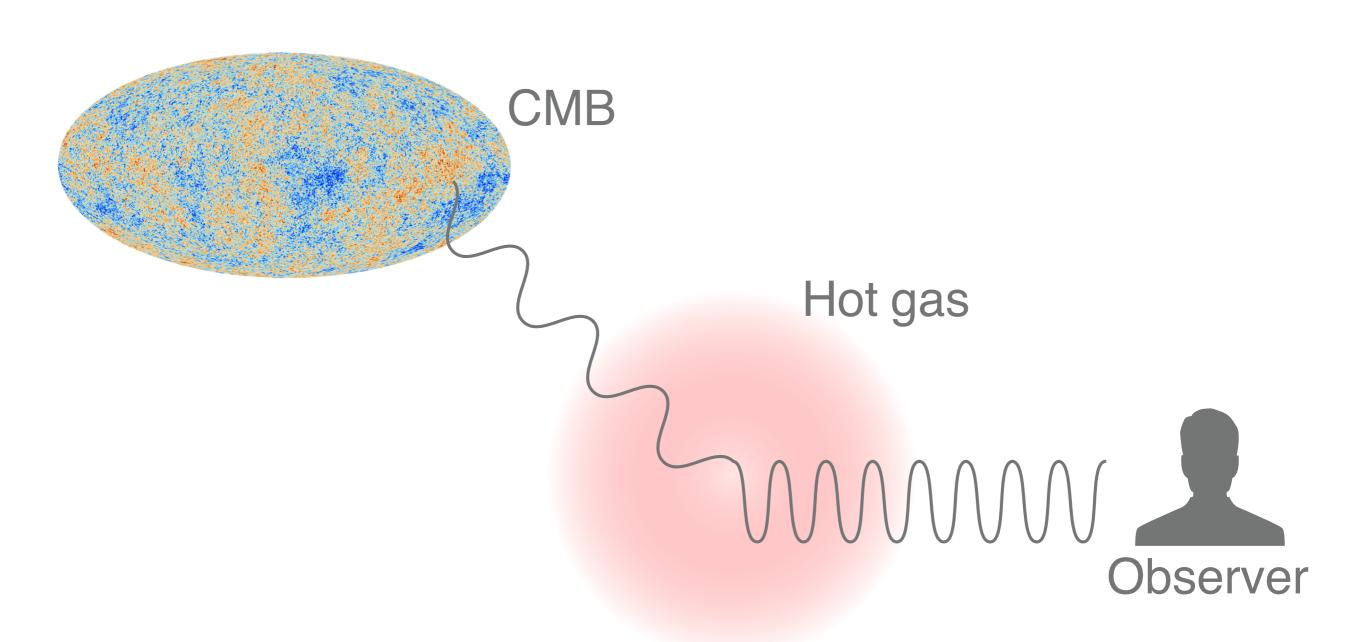


## Effect on cosmological parameters

#### Account for baryons

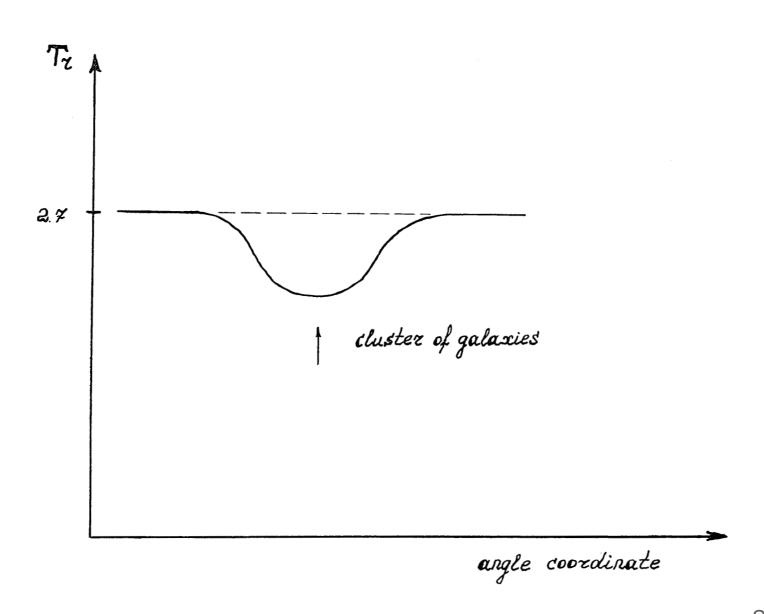
- Throw out data
- Model & marginalise
  - Need priors
    - Need observations of distribution of baryons

## Thermal Sunyaev-Zel'dovich Effect

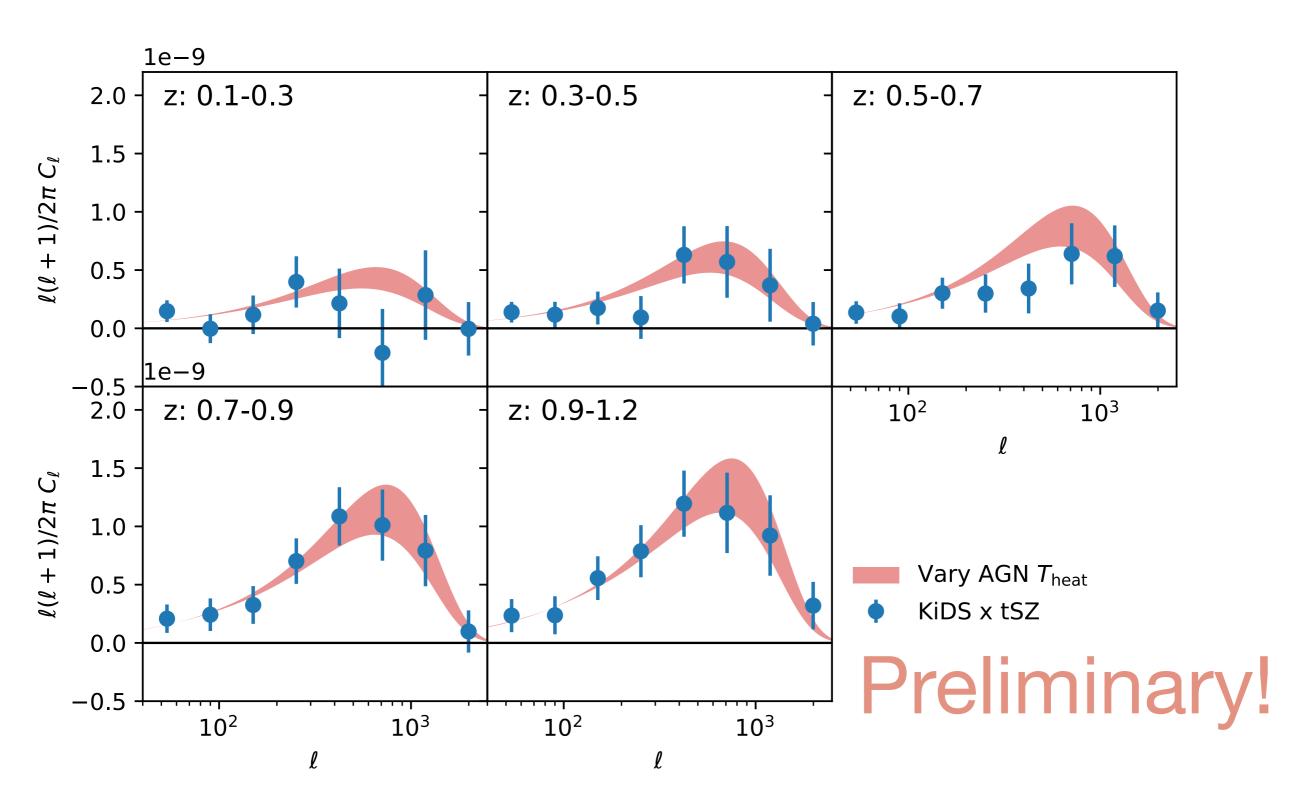


## tSZ effect

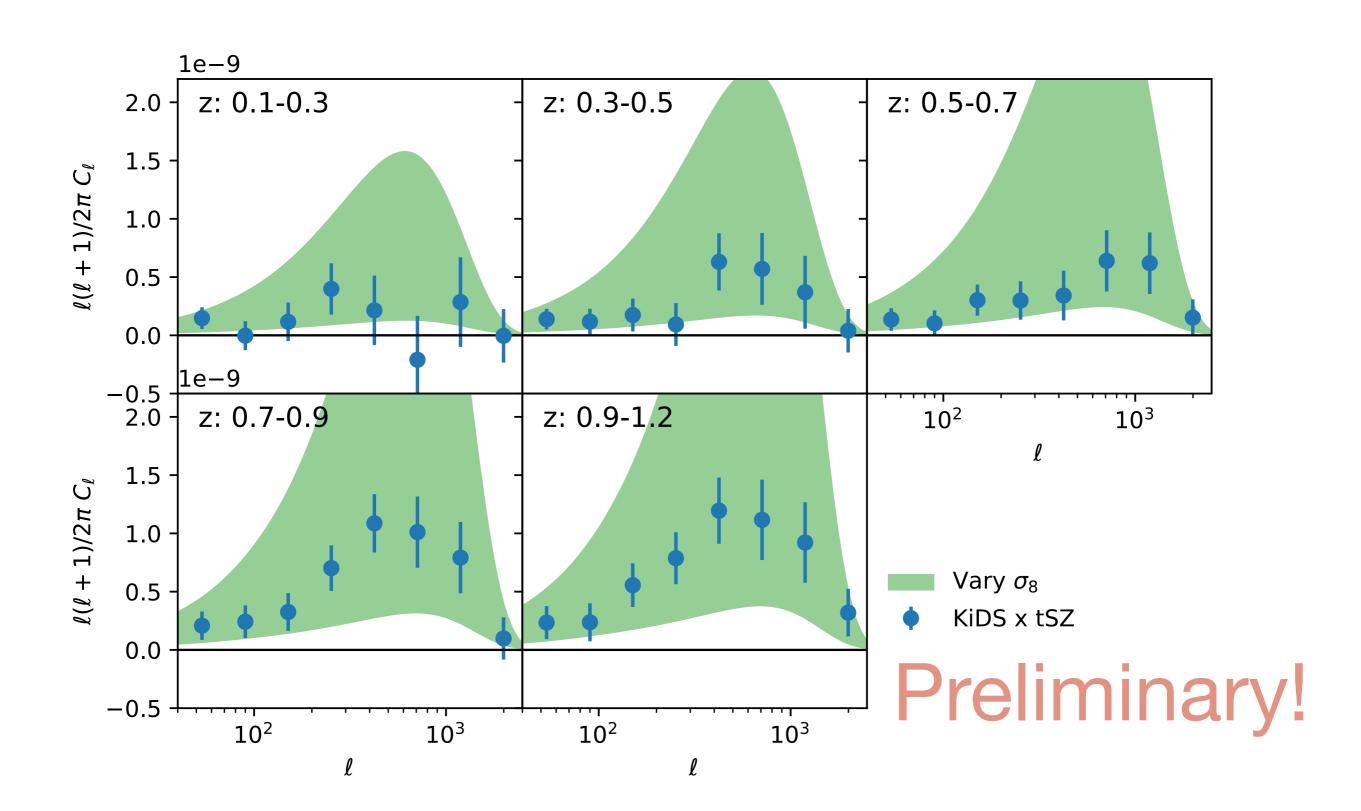
#### "Shadow" on the CMB



## Cross-correlate tSZ with lensing (Planck x KiDS-1000)



## Cosmology dependence?



## Effect on cosmological parameters

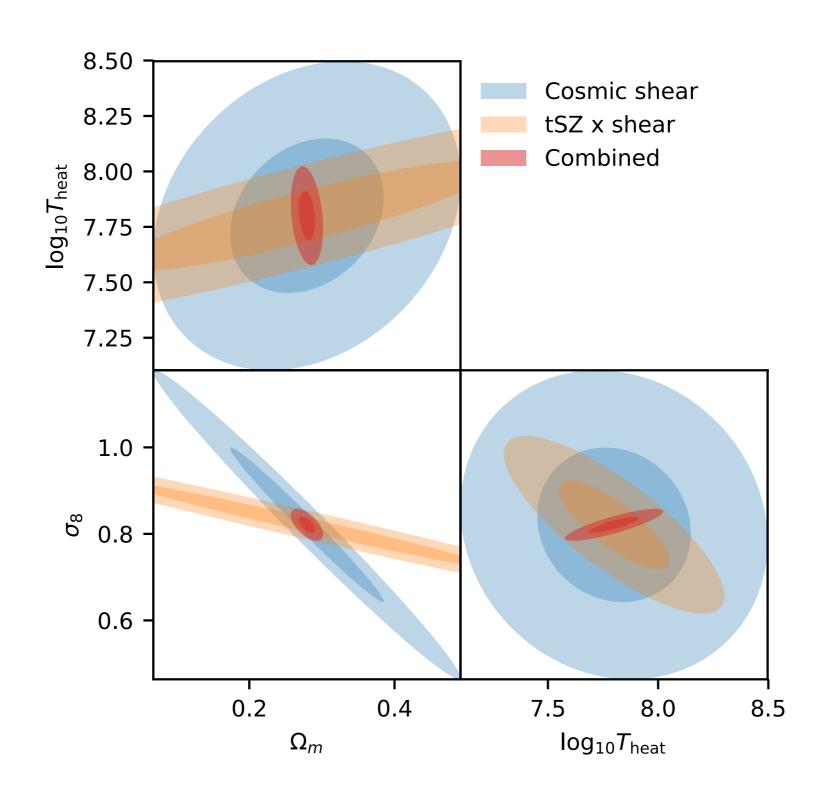
#### Account for baryons

- Throw out data
- Model & marginalise
  - Need priors
    - Need observations of distribution of baryons

#### Use baryons for cosmology

Joint analysis of lensing and tSZ

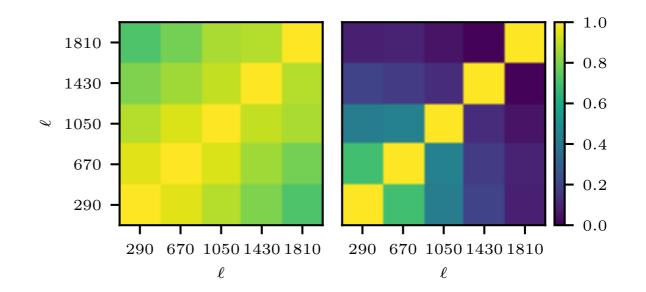
## Joint analysis of lensing, tSZ



#### Covariances

#### Analytic

- Gaussian insufficient
- Modelling uncertain



#### **Simulations**

O(10³) hydrosims for tSZ+lensing is expensive

#### Internal

Non-trivial to do correctly

## Why are hydro sims hard?

#### Feedback couples large and small scales

- Simulating large and small scales at the same time is hard
- We don't care about the small scales
- Is there an effective mapping from dark matter to the largescale gas distribution?

#### Simulation data

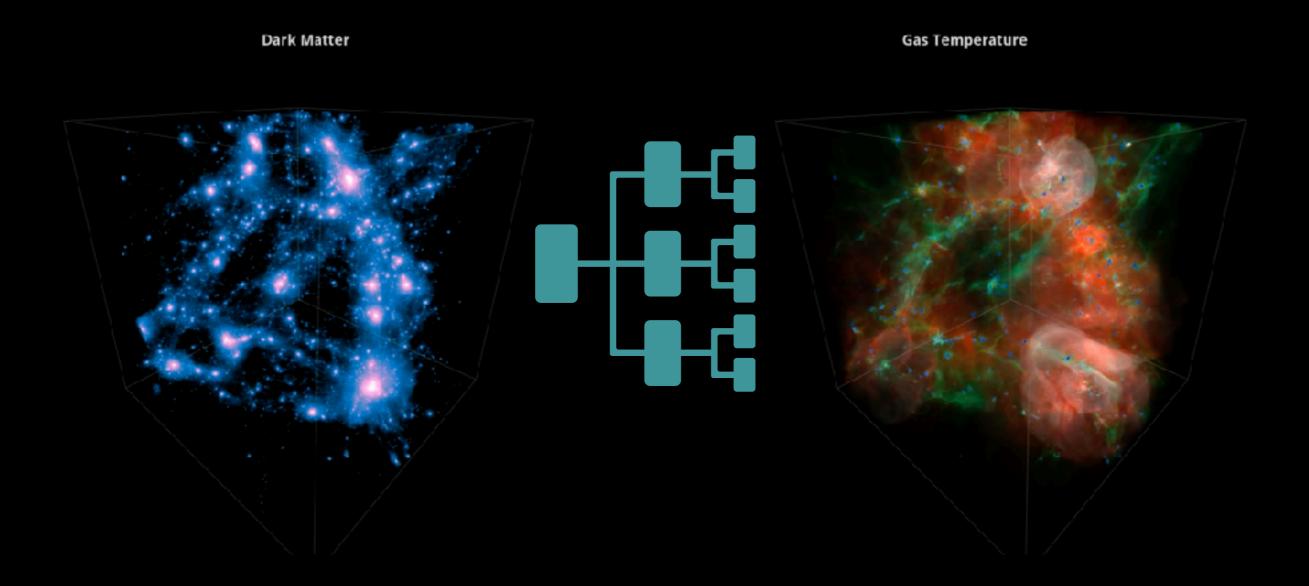
#### **SLICS**

- N-body simulation for covariance estimation
- 505 Mpc/h box size
- ~1000 independent volumes

#### **BAHAMAS**

- Hydrodynamical simulation
- 400 Mpc/h box size
- 3 independent volumes

## Use machine learning?







## Deep generative models

#### Variational auto-encoder (VAE)

- Probabilistic description
- Easy to train
- Can predict variance of output

#### Generative adversarial network (GAN)

- Tends to give better results
- Training is harder; often unstable

## Conditional Variational Auto-Encoder (CVAE)

#### Basic problem: given dark matter, sample pressure

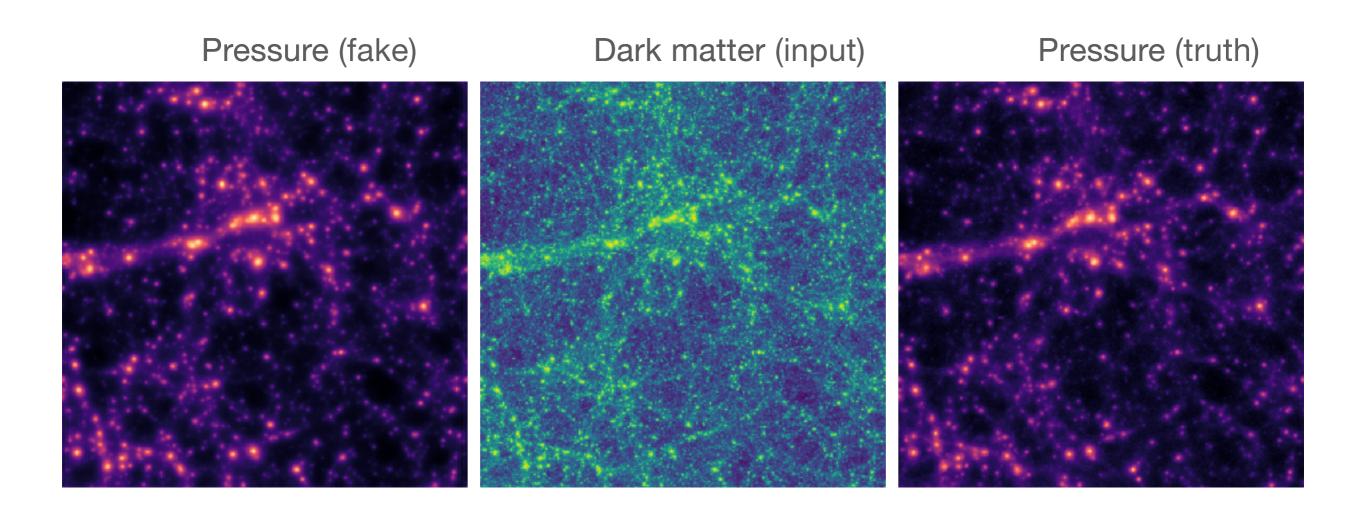
- x is pressure, y is dark matter
  - $x \sim p(x|y)$

#### Introduce latent variable z

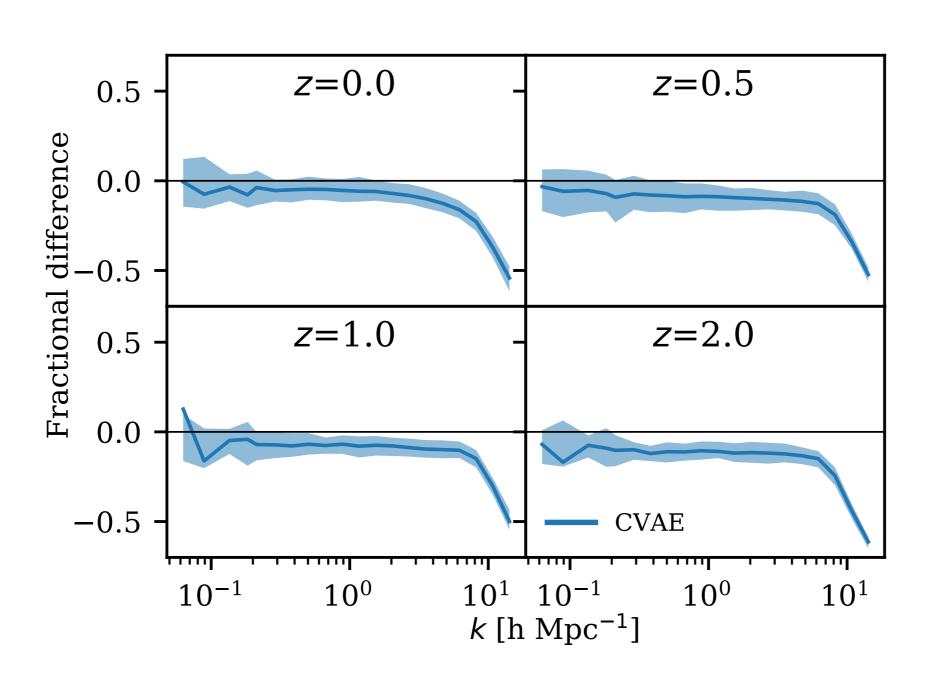
• 
$$p(x|y) = \int dz \ p(x,z|y) = \int dz \ p(x|y,z)p(z|y)$$

Infinite mixture model

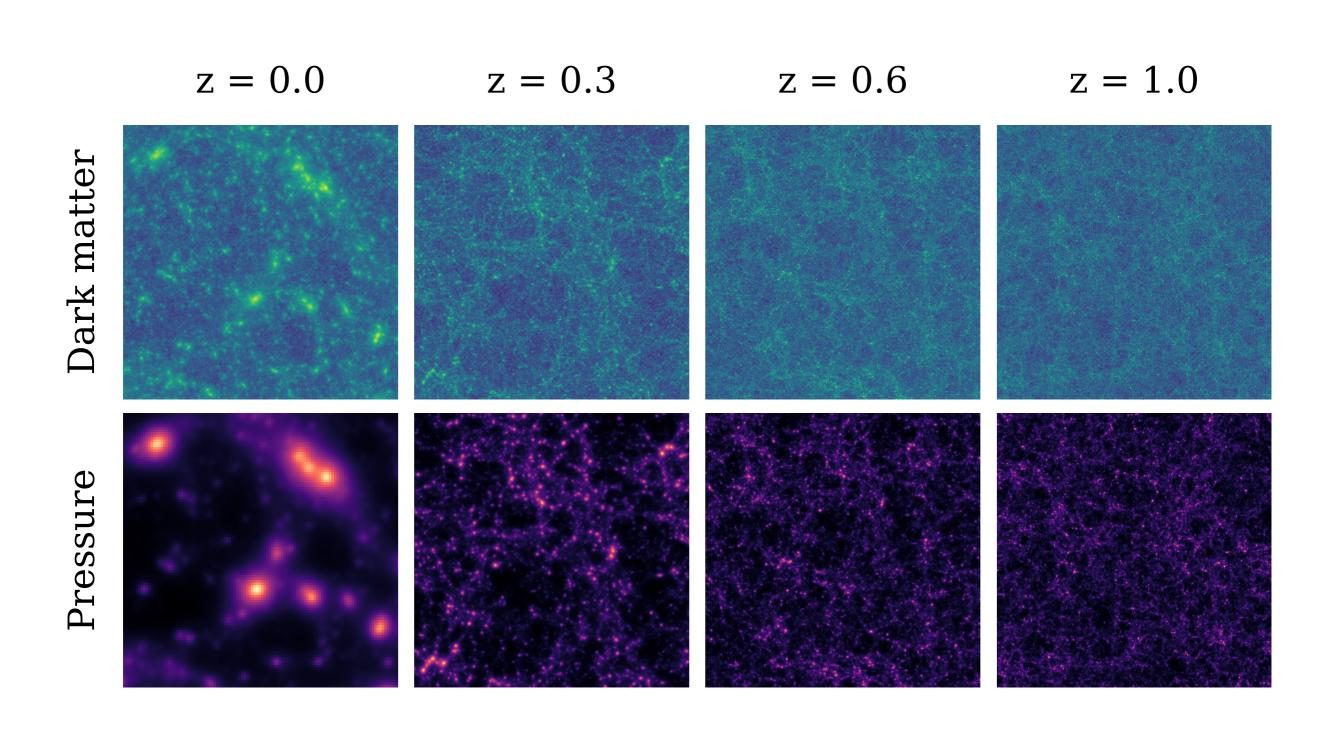
## Results



## Cross-power spectra

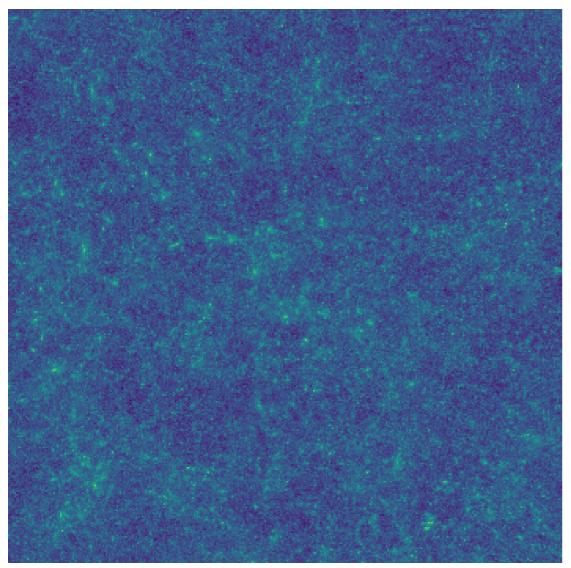


## Paint on SLICS

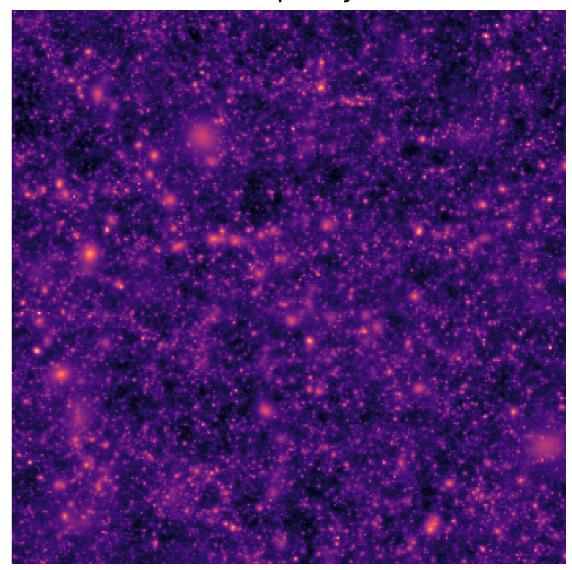


## Convergence vs Compton-y

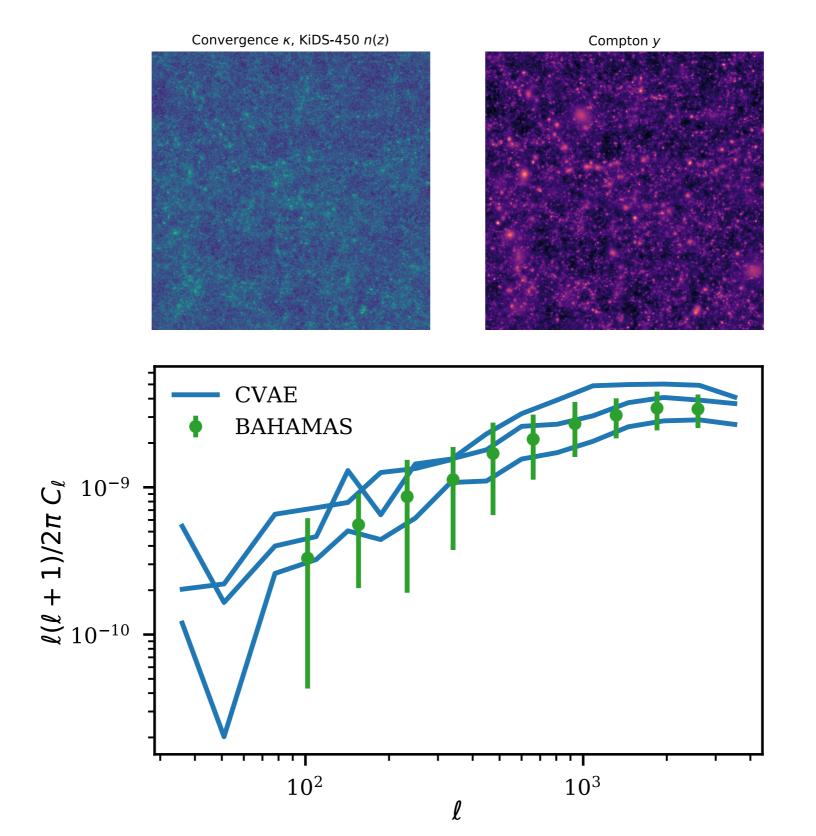
Convergence  $\kappa$ , KiDS-450 n(z)



Compton *y* 



## Convergence vs Compton-y



## Summary

Baryons need to be accounted for if we want to fully exploit weak lensing data

Baryons hold cosmological information themselves

Deep generative models are powerful tools to bridge the gap between N-body and hydrosims



## Conditional Variational Auto-Encoder (CVAE)

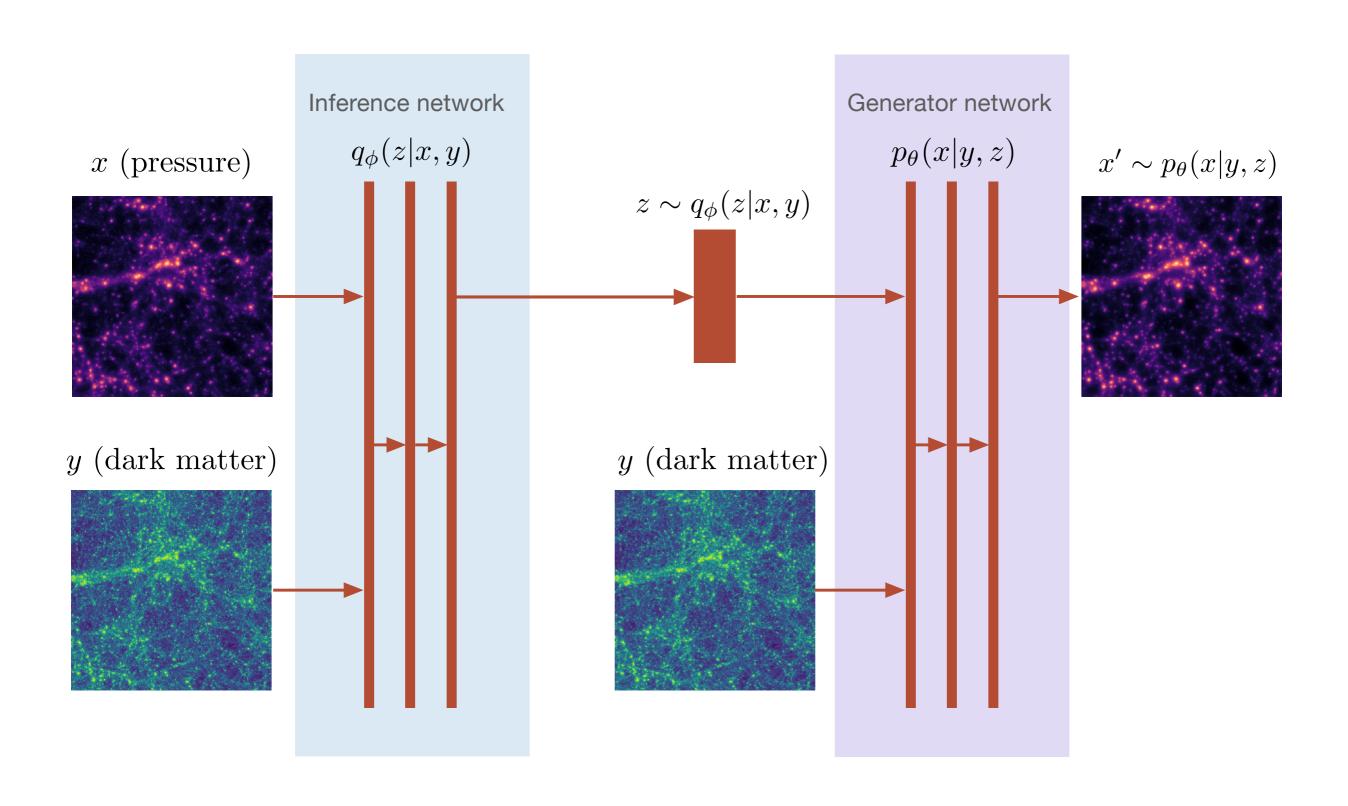
#### Variational lower bound

• 
$$\log p(x|y) \geq -\mathbb{D}_{\mathrm{KL}}(q_{\phi}(z|x,y)||p_{\theta_1}(z|y)) + \mathbb{E}_{z \sim q_{\phi}(z|x,y)}[\log p_{\theta_2}(x|y,z)]$$

KL-term Reconstruction

- $q_{\phi}(z|x,y)$ ,  $p_{\theta_1}(z|y)$ , and  $p_{\theta_2}(x|y,z)$  can be expressed as neural networks
- Can be efficiently optimised

## Conditional Variational Auto-Encoder (CVAE)



#### Simulation data

#### **SLICS**

- N-body simulation
- 505 Mpc/h box size
- ~1000 independent volumes

#### **BAHAMAS**

- Hydrodynamical simulation
- 400 Mpc/h box size
- 3 independent volumes

#### Simulation data

#### **SLICS**

- No particle snapshots
- Mass sheets corresponding to 252 Mpc/h thick slices
- Not a problem; lensing and tSZ are projected quantities

#### BAHAMAS

- Create 250 Mpc/h thick slices
- Form combinations of 150 Mpc/h and 100 Mpc/h slices
- ~50k samples per redshift

## CVAE vs CGAN

