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Weak lensing

Weak lensing probes the total matter distribution

• ~80% of matter is dark matter 
• ~20% is baryons 
• If we want to constrain ΛCDM, we need to understand the 

20% of baryons 
• Baryons are complicated!



Effect of baryons on the matter power spectrum
Baryonic physics mitigation for lensing 5
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Figure 1. The ratios of the matter power spectra in di↵erent hy-
drodynamical simulations with respect to their counterpart DMO
simulations at z = 0. The thick lines show results for the Eagle,
MB2 and Illustris simulations, while the thin lines indicate the 9
di↵erent baryonic scenarios in OWLS simulation suite. The gray
vertical line separates between regions where the data points come
from direct measurement (k . 30 h�1Mpc) and from extrapolation
with a quadratic spline fit (k & 30 h�1Mpc; see Appendix B for
further details).

ing power spectra show significant di↵erences. The feedback
mechanism in Illustris drastically suppresses the power by
35% at k ⇡ 5 h

�1Mpc. Eagle reaches its maximum suppres-
sion of power of 20% at k ⇡ 20 h

�1Mpc. A similar trend is
also observed in Horizon-AGN, but it reaches its minimum
amplitude reduction of 10% at k ⇡ 10 h

�1Mpc. Going to-
wards higher k, we start to see that the ratio curves bend
upward and keep increasing beyond k of 30 h

�1Mpc. The
MB2 power spectrum behaves relatively similar to DMO,
but still the baryonic prescription prevents the power spec-
trum ratio from growing too quickly compared to the OWLS
scenarios without AGN feedback, which su↵er from severe
overcooling e↵ect.

The input cosmologies (pco,sim) for the five simulation
suits are di↵erent. In order to predict matter power spectra
with baryonic e↵ects for arbitrary cosmological parameters,
we take the power spectrum ratios shown Fig. 1 and apply
the following equation:

P
hydro
� (k, z | pco) =

P
hydro,sim
� (k, z | pco,sim)

P
DMO,sim
� (k, z | pco,sim)

P
theory
� (k, z | pco) ,

(1)

where P
hydro,sim
� (k, z | pco,sim) denotes the hydrodynamical

run from a given simulation; P
DMO,sim
� (k, z | pco,sim) is the

corresponding DMO run; P
theory
� (k, z | pco) is the theoretical

power spectrum calculated from Halofit (Takahashi et al.

2012) or HMcode (Mead et al. 2015), which are calibrated
by DMO simulations.

Eq. (1) illustrates an important assumption in this
work: we assume that baryonic e↵ects on the power spec-
trum can be represented as a fractional change in the power
spectrum, and that this fractional change is independent of
cosmology. The cosmology enters our analysis only through

the theoretical power spectrum P
theory
� (k, z | pco). In reality,

the baryonic and cosmological e↵ects may couple in a com-
plex way a↵ecting the growth of cosmic structure.

3 LIKELIHOOD ANALYSIS METHODOLOGY

Here we present our methodology in estimating the cosmo-
logical constraining power for an LSST-like survey. We start
by describing the theoretical models used in the work, our
mock observations, the covariance matrix constructed for an
LSST-like survey, and finally the likelihood formalism used
in estimating the posterior distribution of cosmological pa-
rameters. The cosmological model considered in our likeli-
hood simulation is flat wCDM, with varying cosmological
parameters pco = {⌦m, �8, ⌦b, ns, w0, wa, h}.

3.1 Theoretical Models

We rely on two main theoretical models to fit our mock
observables in this work. The first one is the Takahashi
et al. (2012) version of Halofit. It adopts empirically-
motivated functional forms to characterize the variation of
power spectra with cosmology. Having been calibrated with
high-resolution N-body simulations, it provides an accurate
prediction of the nonlinear matter spectrum with 5% preci-
sion at k  1 h

�1Mpc and 10% at 1  k  30 h
�1Mpc within

the redshift range of 0  z  10.
The second fitting routine is HMcode, constructed by

M15. It utilizes the halo-model formalism to describe the
cosmological change of power spectra via physically moti-
vated parameters. HMcode has prescriptions for capturing
the impact of baryons on the matter power spectrum via two
free parameters: the amplitude of the concentration-mass re-
lation (A; see Eq. (14) in M15), and a halo bloating param-
eter (⌘0; see Eqs. (26), (29) in M15) controlling the change
of dark matter halo profiles in a halo mass-dependent way
to account for di↵erent feedback energy levels. When al-
lowing A and ⌘0 to vary, it can successfully fit the power
spectra from various baryonic scenarios of OWLS (M15).
When fixing A = 3.13 and ⌘0 = 0.6044, HMcode functions
as a regular DMO-based emulator, which is calibrated with
high-resolution N-body simulations to an accuracy of ⇡ 5%
at k  10 h

�1Mpc for z  2. We note that the ⇡ 5% discrep-
ancy between the DMO mode of HMcode and Halofit

is non-negligible within LSST statistics. We therefore con-
struct two sets of mock observables based on each theoretical
model.

3.2 Mock Observational Data

We rely on four hydrodynamical simulations: Eagle, MB2,
Illustris and Horizon-AGN to study the bias in cosmological
parameters when analyzing weak lensing data while ignor-
ing baryonic e↵ects. Assuming that we were living in these
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Figure 4. Cosmological parameter constraints for an LSST-like
weak lensing survey with data vectors generated using various
baryonic physics scenarios: pure DM (gray/solid) and the Ea-
gle (blue/solid), MB2 (red/dashed), Illustris (yellow/dot-dashed)
and Horizon-AGN (black/dotted) hydrodynamical simulations.
In all cases, baryonic physics was ignored during the likelihood
analysis, hence providing a worst-case scenario for biases due to
baryonic physics. The analyses are carried out assuming non-
informative priors on the parameters. Here, and in all such 2D
posterior plots below, the contours depict the 68% confidence lev-
els. Depending on the intensity of the baryonic feedback, the re-
sulting posterior distributions can be significantly away from the
fiducial cosmology (marked in gray lines).

We will present in §4 on how we implement various bary-
onic mitigation schemes in the likelihood analysis. But be-
fore that, in Fig. 4 we show the posterior distribution of cos-
mological parameters derived from our LSST likelihood sim-
ulation, when naively applying theHalofitmodel on fitting
the data vectors contaminated with baryonic e↵ects from
Eagle/MB2/Horizon-AGN/Illustris simulations. For ease of
visualization, we only show posteriors in the subspace of four
cosmological parameters out of seven in total. Depending on
the intensity of baryonic feedback as reflected in the ratio
of hydrodynamical to DMO power spectra shown in Fig. 1,
the resulting cosmology constraints can be severely biased
in the case of Illustris (2� ⇠ 13� depending on cosmological
parameters) or at 1� ⇠ 2� level in the other three cases.
We note that the degree of bias depends on the `max used
in the analysis. Fig. 4 presents the result when applying a
cut at `max ⇡ 2000 on D, which is the default setting in the
paper. In §5.4, we will show how this result changes when
extending data vectors to `max ⇡ 5000.

4 METHODS OF MITIGATING BARYONIC
EFFECTS

In this section, we describe the methods used to miti-
gate the impact of baryonic physics on the cosmological
parameter estimates from weak lensing. The methods can
be classified into two categories: PCA-based methods and
the halo-model based approach. We discuss several PCA-
based methods that are minor variants of each other in
§4.1 to §4.3. The halo-model based approach is described
in §4.4. Throughout the work, we use the nine OWLS sim-
ulations as our ‘training sample’ to construct PCs for the
PCA-based methods, and use the four mock data vectors
constructed from Eagle/MB2/Illustris/Horizon-AGN simu-
lations as ‘test sample’ to test methods listed in Table 3.

4.1 PCA in Di↵erence Matrix

4.1.1 Summary of the original PCA framework

The original framework for using PCA to mitigate the im-
pact of baryonic physics for weak lensing is described in Ei-
fler et al. (2015). The essential idea is that even though hy-
drodynamical simulations with di↵erent baryonic prescrip-
tions predict a range of variations on the matter power spec-
tra (Fig. 1), we can still extract the common features of those
diversity using PCA, and build an empirical model to mit-
igate baryonic uncertainty based on these hydrodynamical
simulations. Below we provide a step-by-step description of
the PCA framework.

We collect the tomographic shear power spectra con-
structed from the nine OWLS simulations as our train-
ing sample, and label these nine data vectors as B1, ..., B9.
Next we build a di↵erence matrix �(pco) with dimension of
Ndata⇥Nsim = 990⇥9. Each column records the deviation be-
tween the baryonic data vector and the DMO model vector
M at any arbitrary cosmology (recomputed for each MCMC
step) in terms of their di↵erence

�(pco) =
266664
B1 � M B2 � M . . . B9 � M

377775Ndata⇥Nsim

.

(8)

Both Bx(pco) and M(pco) are functions of cosmology, and
therefore so is �. To produce a baryon-contaminated vector
Bx at cosmology pco, in principle we should rely on Eq. (1)
to generate the matter power spectrum for that cosmology,
and integrate it to derive the tomographic shear data vector

C
i j
hydro,x(` | pco) =

9H
4
0⌦

2
m

4c4

π �h

0
d�

gi(�)g j (�)
a2(�)

P
hydro,x
�

✓
`

fK (�), � | pco

◆
.

(9)

However, to increase the computational speed, we approxi-
mate this step by

Bx(pco) = C
i j
hydro,x(pco) =

C
i j
hydro,x(pco,fid)

C
i j
theory(pco,fid)

C
i j
theory(pco) , (10)
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Effect on cosmological parameters

Account for baryons

• Throw out data 
• Model & marginalise 

• Need priors 
• Need observations of distribution of baryons



Thermal Sunyaev-Zel’dovich Effect

Hot gas

CMB

Observer



tSZ effect

“Shadow” on the CMB
19
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Sunyaev, Zel’dovich 1972



Cross-correlate tSZ with lensing  
(Planck x KiDS-1000)

Preliminary!



Cosmology dependence?

Preliminary!



Effect on cosmological parameters

Account for baryons

• Throw out data 
• Model & marginalise 

• Need priors 
• Need observations of distribution of baryons 

Use baryons for cosmology

• Joint analysis of lensing and tSZ



Joint analysis of lensing, tSZ



Covariances

Analytic

• Gaussian insufficient 
• Modelling uncertain 

Simulations

• O(103) hydrosims for tSZ+lensing is expensive 

Internal

• Non-trivial to do correctly
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Why are hydro sims hard?

Feedback couples large and small scales

• Simulating large and small scales at the same time is hard 
• We don’t care about the small scales 
• Is there an effective mapping from dark matter to the large-

scale gas distribution?



Simulation data

SLICS

• N-body simulation for covariance estimation 
• 505 Mpc/h box size 
• ~1000 independent volumes  

BAHAMAS

• Hydrodynamical simulation 
• 400 Mpc/h box size 
• 3 independent volumes



Use machine learning?

Vogelsberger+2004



Figure 2. Uncurated set of images produced by our style-based
generator (config F) with the FFHQ dataset. Here we used a vari-
ation of the truncation trick [5, 29] with  = 0.7 for resolutions
42 � 322. Please see the accompanying video for more results.

configurations B–F. We found these choices to give the best
results. Our contributions do not modify the loss function.

We observe that the style-based generator (E) improves
FIDs quite significantly over the traditional generator (B),
almost 20%, corroborating the large-scale ImageNet mea-
surements made in parallel work [6, 5]. Figure 2 shows
an uncurated set of novel images generated from the FFHQ
dataset using our generator. As confirmed by the FIDs, the
average quality is high, and even accessories such as eye-
glasses and hats get successfully synthesized. For this fig-
ure, we avoided sampling from the extreme regions of W
using the so-called truncation trick [5, 29] — Appendix B
details how the trick can be performed in W instead of Z .
Note that our generator allows applying the truncation se-
lectively to low resolutions only, so that high-resolution de-
tails are not affected.

All FIDs in this paper are computed without the trun-
cation trick, and we only use it for illustrative purposes in
Figure 2 and the video. All images are generated in 1024

2

resolution.

2.2. Prior art
Much of the work on GAN architectures has focused on

improving the discriminator by, e.g., using multiple dis-
criminators [15, 40], multiresolution discrimination [52,
48], or self-attention [55]. The work on generator side has
mostly focused on the exact distribution in the input latent
space [5] or shaping the input latent space via Gaussian
mixture models [4], clustering [41], or encouraging convex-
ity [45].

Recent conditional generators feed the class identifier
through a separate embedding network to a large number
of layers in the generator [39], while the latent is still pro-
vided though the input layer. A few authors have considered
feeding parts of the latent code to multiple generator layers
[9, 5]. In parallel work, Chen et al. [6] “self modulate” the
generator using AdaINs, similarly to our work, but do not
consider an intermediate latent space or noise inputs.

3. Properties of the style-based generator
Our generator architecture makes it possible to control

the image synthesis via scale-specific modifications to the
styles. We can view the mapping network and affine trans-
formations as a way to draw samples for each style from a
learned distribution, and the synthesis network as a way to
generate a novel image based on a collection of styles. The
effects of each style are localized in the network, i.e., modi-
fying a specific subset of the styles can be expected to affect
only certain aspects of the image.

To see the reason for this localization, let us consider
how the AdaIN operation (Eq. 1) first normalizes each chan-
nel to zero mean and unit variance, and only then applies
scales and biases based on the style. The new per-channel
statistics, as dictated by the style, modify the relative impor-
tance of features for the subsequent convolution operation,
but they do not depend on the original statistics because of
the normalization. Thus each style controls only one convo-
lution before being overridden by the next AdaIN operation.

3.1. Style mixing
To further encourage the styles to localize, we employ

mixing regularization, where a given percentage of images
are generated using two random latent codes instead of one
during training. When generating such an image, we sim-
ply switch from one latent code to another — an operation
we refer to as style mixing — at a randomly selected point
in the synthesis network. To be specific, we run two latent
codes z1, z2 through the mapping network, and have the
corresponding w1,w2 control the styles so that w1 applies
before the crossover point and w2 after it. This regular-
ization technique prevents the network from assuming that
adjacent styles are correlated.

Table 2 shows how enabling mixing regularization dur-

3
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Deep generative models

Variational auto-encoder (VAE)

• Probabilistic description 
• Easy to train 
• Can predict variance of output 

Generative adversarial network (GAN)

• Tends to give better results 
• Training is harder; often unstable



Conditional Variational Auto-Encoder (CVAE)

Basic problem: given dark matter, sample pressure

•  x is pressure, y is dark matter 

•   

Introduce latent variable z

•   
•  Infinite mixture model

x ⇠ p(x|y)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p(x|y) =
Z

dz p(x, z|y) =
Z

dz p(x|y, z)p(z|y)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>



Results

Pressure PressureDark matterPressure (fake) Pressure (truth)Dark matter (input)



Cross-power spectra



Paint on SLICS



Convergence vs Compton-y



Convergence vs Compton-y



Summary

Baryons need to be accounted for if we want to fully 
exploit weak lensing data


Baryons hold cosmological information themselves


Deep generative models are powerful tools to bridge the 
gap between N-body and hydrosims

This project has received funding from the European Union’s 
Horizon 2020 research and innovation programme under the Marie 
Skłodowska-Curie grant agreement No 797794 



Conditional Variational Auto-Encoder (CVAE)

Variational lower bound

•   

•               ,            , and                  can be expressed as 
neural networks  

• Can be efficiently optimised

q�(z|x, y)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

KL-term Reconstruction 

log p(x|y) � �DKL(q�(z|x, y)||p✓1(z|y)) + Ez⇠q�(z|x,y)[log p✓2(x|y, z)]
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p✓1(z|y)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p✓2(x|y, z)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>



Conditional Variational Auto-Encoder (CVAE)

Inference network

q�(z|x, y)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

z ⇠ q�(z|x, y)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

y (dark matter)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

x (pressure)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

y (dark matter)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p✓(x|y, z)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Generator network

x0 ⇠ p✓(x|y, z)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>



Simulation data

SLICS

• N-body simulation 
• 505 Mpc/h box size 
• ~1000 independent volumes  

BAHAMAS

• Hydrodynamical simulation 
• 400 Mpc/h box size 
• 3 independent volumes



Simulation data

SLICS

• No particle snapshots 
• Mass sheets corresponding to 252 Mpc/h thick slices 
• Not a problem; lensing and tSZ are projected quantities 

BAHAMAS

• Create 250 Mpc/h thick slices 
• Form combinations of 150 Mpc/h and 100 Mpc/h slices 
• ~50k samples per redshift



CVAE vs CGAN


