Recent Results from the Dark Energy Survey

Elisabeth Krause (Arizona) on behalf of the DES Collaboration

Accelerating Universe in the Dark 03/07/2019

It's muddy deep down in the swamp...

- difficult to measure colors and shapes
- obstacles can lurk in plain sight

Dark Energy Survey Collaboration

The Dark Energy Survey

- New camera for CTIO Blanco 4m telescope
 - DECam Facility instrument
- Two multicolor surveys:
 - 300 M galaxies over 5000 sq deg, grizY to 24th mag
 - 3000 supernovae (27 sq deg)
- Probe origin of Cosmic Acceleration:
 - Distance vs. redshift
 - Growth of Structure
- Survey completed after 5.5 years of observations

DECam on the CTIO Blanco 4m

www.darkenergysurvey.org

Dark Energy Survey: Progress

SV (150 sq .deg., full depth) science done, catalogs public

Y1 (1500 sq. deg., 40% depth) most science done, catalogs public

Y3 (5000 sq. deg., 50% depth)

data processed, vetting catalogs, preliminary analyses ongoing

	Area	Exposure time (s) (per visit for SNe) Specified median PSF FWHM (arcsec)					Dithering	Cadence
	(deg ²	g	r	i	z	Y		
Wide	5000	10x90 -	l 0x90 0.9"	10x90 0.9"	l 0x90 0.9"	10x45 -	10 fully interlaced tilings	10 tilings over 5 years
SN Shallow	24	x 75 -	×150 -	I×200 -	2×200	-	Minimal dithers	Seeing >1.1" or 7 days since last observed
SN Deep	6	3×200 -	3×400	5×360 -	10×330 -			

Major El Nino affected Year 3

DES Year 1 Galaxy Samples

- 660,000 redMaGiC galaxies with excellent photo-z's
- Measure angular clustering in 5 redshift bins
- Use as lenses for galaxy-galaxy lensing

+30° +20° +10° 0° 0° -10° -30° -40° -50°

First Year of Data: ~1800 sq. deg. Analyzed 1321 s.d. after cuts

DES Year 1 3x2pt Analysis

With great statistical power comes great systematic responsibility

Drlica-Wagner, Rykoff, Sevilla+

Full, validated treatment of covariance and nuisance parameters (including v)

Two independent shape & photo-z catalogs and calibrations

Zuntz, Sheldon+, Samuroff+ Cawthon+, Davis+, Gatti, Vielzeuf+, Hoyle, Gruen+

Theory and simulation tested, blind, analysis with two independent codes, CosmoLike and CosmoSIS

With great statistical power comes great systematic responsibility

- unprecedented combination of area and depth
- two independent galaxy shape measurements, including novel metacalibration algorithm
- two independent calibrations of photometric redshifts

- Matching galaxy population to COSMOS galaxies with known redshift: Hoyle, Gruen+ (1708.01532)
- Clustering of galaxy population with galaxies with known redshift: Davis+ (1707.08256)
- Methods agree, ~0.015 joint errors!

Measurements: shear catalogs

(Huff+17, Sheldon+17, Zuntz+17) Metacalibration

- New estimator measuring shear response internally by deconvolving, shearing, deconvolving.
- Uses g, r, i bands.
- 35 M galaxies (26 M for cosmology).

im3shape

- Best-fit bulge & disc models, calibrated with simulations.
- Uses only r-band.
- 22 M galaxies (18 M for cosmology).

Systematics Modeling + Mitigation

baseline systematics marginalization (20 parameters)

- linear bias of lens galaxies, per lens z-bin
- lens galaxy photo-zs, per lens z-bin
- source galaxy photo-zs, per source z-bin
- multiplicative shear calibration, per source z-bin
- intrinsic alignments, power-law/free amplitude per per source z-bin

Systematics Modeling + Mitigation

baseline systematics marginalization (20 parameters)

- linear bias of lens galaxies, per lens z-bin
- lens galaxy photo-zs, per lens z-bin
- source galaxy photo-zs, per source z-bin
- multiplicative shear calibration, per source z-bin
- intrinsic alignments, power-law/free amplitude per per source z-bin
- -> this list is known to be incomplete

how much will known, unaccounted-for systematics bias Y1 results?

-> choice of parameterizations ≠ universal truth

are these parameterizations sufficiently flexible for Y1 analyses?

Angular Scale Cuts: remove known, unaccounted-for systematics

-> this list is known to be incomplete

how much will known, unaccounted-for systematics bias Y1 results? Example: generate input 'data' incl. 2nd order galaxy bias enhances clustering signal on small physical scales determine scale cuts to minimize parameter biases

Systematics Modeling + Mitigation: if you asked us 3 years ago...

Easy to come up with large list of systematics parameters:

- LSS: LF, bias (e.g., 5 HOD parameters + b₂ per z-bin,type)
- Clusters: MOR, projection effects, triaxiality, ...
- WL: shear calibration, photo-z uncertainties, intrinsic alignments,...

 Σ (poll among DES working groups) ~ 500-1000 parameters

Systematics Modeling + Mitigation: why such simple models?

- More accurate (+more complex) systematics models have been around for decades... why not use them?
- Sampling over poorly constrained model parameters may bias inferred cosmology (if model parameters are degenerate with cosmology)
- Model evaluation time is important when running hundreds of chains
- (save most accurate model for validation)

Constraining power influences allowed model complexity Lesson: simulate analyses early and often!

Systematics Mitigation: imperfect parameterizations

Analysis Validation: Mock Catalogs -> Cosmology

DeRose+ 2019:

Realistic DES mock catalogs including galaxy properties and DES-specific observational effects

MacCrann, DeRose+ 2018: Measure 3x2pt on mock catalogs (with known cosmology)

Analyze with DES cosmology pipeline

Recover input cosmology!

Multi-Probe Blinding

Implementation: two-staged blinding process

- shear catalogs scaled by unknown factor, until catalogs fixed
- cosmo params shifted by unknown vector, *until full analysis fixed*
- (do not overplot measurement + theory)
- (clearly state any post-unblinding changes in paper)

Post-Unblinding Updates

- shear catalog blinding removed by meta-calibration
 best-kept secret in DES
- include survey footprint in shot/shape noise model
 - \circ updates to evidence ratios, χ^2
 - $\circ \chi^2/dof = 1.16$
 - parameter values ~unaffected

Multi-Probe Constraints: LCDM

- DES-Y1 most stringent constraints from weak lensing
- marginalized 4 cosmology parameters, 10 clustering nuisance parameters, and 10 lensing nuisance parameters
- consistent cosmology constraints from weak lensing and clustering in configuration space

DES Collaboration 1708.01530

Independent pipelines

Photo-z consistency

compilation by Troxel

Extended IA Modeling

- Repeated DES-YI 3x2pt analysis with early/late galaxy split, and using different IA models (NLA; TATT, Blazek+2017)
- DES-YI 3x2pt baseline analysis robust to these IA modeling choices

Comparison of DES 3x2 with Planck CMB: low-z vs high-z in ΛCDM

- note: contours marginalized over M_v=[0.06,1]eV
- Central values differ by >1σ, in same direction as KiDS
- Bayes factor R = 6.6, "substantial" evidence for consistency in ΛCDM

DES Collaboration 1708.01530

Comparison of DES 3x2 with Planck CMB: low-z vs high-z in ΛCDM

- note: contours marginalized over M_v=[0.06,1]eV
- Central values differ by >1σ, in same direction as KiDS
- Bayes factor R = 6.6, "substantial" evidence for consistency in ΛCDM
 - or not, due to dependence of evidence on prior volume (Raveri & Hu 18, Handley & Lemos 19)

Structure Growth DES Y1 0.96 Planck 0.90 $\stackrel{\infty}{\sim}_{0.84}$ of Amplitude 0.780.720.240.300.360.42 Ω_m **Matter Density**

DES Collaboration 1708.01530

DES YI: 3x2pt + BAO + SN

- Combined DES-YI results detect dark energy at 4σ
- Combined DES-YI results ~consistent with external probes, and LCDM

DES YI: H₀ from combination with BBN, BAO

BAO observables depend on Ω_m , $\Omega_b h^2$, h Combine with BBN constraint on $\Omega_b h^2$ Combine with DES 3x2pt constraint on Ω_m

DES YI: H₀ from combination with BBN, BAO

Five measurements

statistically independent no shared systematics

Joint fit to all measurements: 2.1 σ discrepancy

DES Cosmology: What's next?

Soon: DES-Y1 cluster results!

Summer 2019

- DES-Y1->Y3 data
 - 3x increase in area
- include additional probes
 - SN, BAO
 - galaxy clusters
- include astrophysics
 - DES-Y1 small-scale cuts reduced S/N by factor 2.5

Outlook

Cosmology Parameters

5%

25% Sample Cut Parameters

70%

"Systematics Parameters"

- observational systematics
 - survey specific
- astrophysical systematics
 - observable + survey specific

sample cuts + systematics highly interconnected 95% systematics...

-> multi-wavelength & multi-probe cosmology to navigate complex parameter spaces

Conclusions

- DES Y1 Cosmology results (from galaxy clustering, galaxygalaxy lensing, and cosmic shear (3x2), SN) are now out: 34 papers, more to follow.
- No significant tension DES Y1 $\langle \rangle$ Planck in Λ CDM (yet?).
- Precision will increase with
 - larger data sets
 - including more probes (clusters, SN, cross-correlations...)
 - improved astrophysics modeling
 - enabling tests of more complex models.