Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam data

Chiaki Hikage (Kavli IPMU)

on behalf of HSC WL team

arXiv: 1809.09148

accepted for publications in PASJ

Cosmic shear

Unique probe of total matter distribution

Sensitive to the clumpiness of the Universe: $S_8 = \sigma_8 \Omega_m^{\alpha} (\alpha \sim 0.5)$

Precise measurement requires many galaxies and unbiased measurement of their shapes

HYPER SUPRIME CAM (HSC)

DEEP & SHARP

i-26 (5 σ) in 20mins ~0.6" seeing

HSC Subaru-Strategic Program (SSP)

Wider

Deeper

- Wide-imaging survey project using HSC
- · 300 nights over 5-6 years (started from March 2014)
- 5 broadbands (grizY)+4NBs
- · 3-layers imaging survey:
 - · Wide (1400deg², r~26) WL, cosmology
 - Deep (27deg², r~27)

 galaxy evolution
 - Ultradeep (3.5deg², r~28)
 cosmic reionization

Survey Location

- · HSC survey fields are selected to overlap with other surveys such as BOSS, ACT, XMM, COSMOS, GAMA, VVDS, VIPERS…
- · DR1 was released in Feb 2017, DR2 will be released in May 2019

HSC Y1 shear catalog

- Data taken by Apr 2016(11% of planned data)
- · 6 fields, 137deg²
- ReGaussianization method (Hirata & Seljak 2003) to measure shapes
- Conservative cut of galaxies for Y1 science (e.g., i<24.5, resolution>1/3)
- High number density:n_g=25gals/sq.arcmin

Map of i-band PSF FWHM

Mandelbaum, Miyatake et al. 2018

survey catalog	area [deg ²]	No. of galaxies	$n_{ m g,eff}$ [arcmin $^{-2}$]	z range
KiDS-450	450	14.6M	6.85	0.1 - 0.9
DES Y1	1321	26M	5.14	0.2 - 1.3
HSC Y1	137	9.0M	16.5	0.3 - 1.5

HSC enables us to measure cosmic shear upto higher redshift with lower shape noise

tomographic analysis

shear multiplicative bias

Blind analysis

Only analysis chair Only blinder-in-chief can decrypt

can decrypt

Catalog level

- · Each analysis team receive three catalogs with different shear bias corrections: one is true, the other two are fake
- Unblinding needs two passwords from each analysis chair and the blinder-in-chief who is not involved in the analysis

Analysis level

- Central values of posterior distributions are blinded
- No comparison with other data in a blinding phase
- All of systematic tests were done to meet specific criteria before unblinding

Estimators: pseudo-Cl

Survey geometry in lensing is quite complicated due to bright star masks

Pseudo-Cl method gives unbiased estimates of lensing power spectrum (CH, Hamana, Takada, Spergel 2011)

$$C_b^{(\text{true})} = M_{bb'}^{-1} \sum_{\ell}^{|\ell| \in \ell_b'} P_{b'\ell} (C_{\ell}^{(\text{obs})} - \langle N_{\ell} \rangle_{\text{MC}})$$

shot noise estimated from random rotation

inverse of mixing matrix

masked spectrum

Testing the pseudo-Cl method using HSC mock catalogs

- HSC mocks made from all-sky lensing simulations (Takahashi+ 2017, Oguri+ 2018, Shirasaki+)
 - Sky positions of sources are identical to data
 - Each source redshift is given from the photo-z PDF
 - Size of each source ellipticity is same as data, but the directions is randomly rotated
 - Convert observed ellipticity to simulated one

Input spectrum is recovered

Covariance

- · Gaussian, non-Gaussian and super-sample covariance terms
- Based on analytical halo-model + noise covariance directly estimated from data by randomly rotating galaxy shapes
- · Cosmology-dependence in covariance is included

Cosmic shear tomographic power spectra

- 4-bin tomography in the range of 0.3<z<1.5
- Focused on the scale 300< €<1900 to avoid potential systematic effects:
 - high ℓ : baryon feedback low ℓ : residual shape noise
- S/N of cosmic shear (EE mode) is ~16
- · BB & EB signals are consistent with zero

bin1: 0.3<z<0.6, bin2: 0.6<z<0.9, bin3: 0.9<z<1.2, bin4: 1.2<z,1.5

Systematics

1. Residual correlations due to PSF modeling error

PSF modeling errors are estimated with the cross-correlations between galaxies and reserved stars that are NOT used in the calibration of PSF

2. Photo-z uncertainty

Source redshift distribution is estimated by re-weighting COSMOS 30-band data. Variances among different stacked P(z) are taken into account by shifting mean redshift

3. Intrinsic alignment (IA)

Nonlinear alignment model is adopted. IA amplitude and power-law index of z-evolution are treated as nuisance parameters

4. Baryon feedback effect

We focus on the scales that baryon feedback is insignificant and evaluate the impact of baryons in the most extreme OWLS AGN feedback model

Parameters & Priors

Nested sampling likelihood analysis using "multinest" in MontePython Fiducial setup: 5 cosmological and 9 nuisance parameters

Parameter	symbols	prior
physical dark matter density	$\Omega_{ m c} h^2$	flat [0.03,0.7]
physical baryon density	$\Omega_{ m b} h^2$	flat [0.019,0.026]
Hubble parameter	h	flat [0.6,0.9]
scalar amplitude on $k = 0.05 \mathrm{Mpc^{-1}}$	$\ln(10^{10}A_s)$	flat [1.5,6]
scalar spectral index	$n_{ m s}$	flat [0.87,1.07]
optical depth	au	flat [0.01,0.2]
neutrino mass	$\sum m_{\nu}$ [eV]	fixed $(0)^{\dagger}$, fixed (0.06) or flat $[0,1]$
dark energy EoS parameter	w	fixed $(-1)^{\dagger}$ or flat $[-2, -0.333]$
amplitude of the intrinsic alignment	A_{IA}	flat [-5,5]
redshift dependence of the intrinsic alignment	$\eta_{ ext{eff}}$	flat $[-5,5]$
baryonic feedback amplitude	A_B	fixed $(0)^{\dagger}$ or flat $[-5,5]$
PSF leakage	\tilde{lpha}	Gauss (0.057, 0.018)
residual PSF model error	$ ilde{eta}$	Gauss (-1.22, 0.74)
uncertainty of multiplicative bias m	$100\Delta m$	Gauss (0,1)
photo-z shift in bin 1	$100\Delta z_1$	Gauss (0, 2.85)
photo-z shift in bin 2	$100\Delta z_2$	Gauss (0, 1.35)
photo-z shift in bin 3	$100\Delta z_3$	Gauss (0, 3.83)
photo-z shift in bin 4	$100\Delta z_4$	Gauss (0, 3.76)

Cosmology

Intrinsic alignment
Baryonic effect
PSF modeling
error
photo-z

Model fitting

Excellent fits:

 χ^{2} _{min}=45.4 against effective d.o.f=57.1 (p-value is 0.87)

Definition of effective d.o.f (Raveri & Hu 2018)

$$\mathrm{DOF} = N_{\mathrm{data}} - N_{\mathrm{eff}}$$

$$N_{
m eff} = N_{
m para} - {
m tr}[\mathcal{C}_{
m prior}^{-1}\mathcal{C}_{
m post}]$$

prior-dominated parameters (e.g., Ω_b , n_s) are not counted in N_{eff}

bin 1: 0.3<z<0.6, bin 2: 0.6<z<0.9, bin 3: 0.9<z<1.2, bin 4: 1.2<z, 1.5

Robustness of S₈ constraints

Central value is shifted to zero before unblinding

shape error: $< 0.1 \sigma$

Photo-z error: ~0.6 σ

Intrinsic alignment: $<0.5\,\sigma$ Massive neutrino: $<0.5\,\sigma$ Baryonic effect: $<0.6\,\sigma$

No significant internal inconsistency

S₈ constraint is robust against various systematics

Before Unblinding

S₈

After Unblinding

Consistent with other lensing surveys

S₈

 $\Omega_{\rm m}$

Consistent with Planck but smaller S8

No significant inconsistency between Planck and HSC from Bayesian Evidence and Raveri & Hu concordance estimators

HSC prefers less clumpy universe than Planck predictions

Tensions are real?

- S₈ from cosmic shear are systematically lower than Planck from
 - · different datasets
 - · different sky regions
 - · different team analyses
 - · different estimators
- This may indicate physics beyond ACDM (e.g., dynamical dark energy, non-minimal neutrino mass, modified gravity)

Model extensions: wCDM

Tension of S₈ reduces by varying w, though there is no significant preference to favor wCDM from Bayesian evidence

Future prospect

- · Current data is just 11% of HSC planned data
- · Future HSC data can give much tighter constraint on S8
- Other cosmological analyses are on-going:
 - cosmic shear with real-space statistics by T. Hamana
 - HSCxBOSS → H. Miyatake's talk
 - HSCxACT → A. Nicola's talk

Summary

- First cosmological analysis from Hyper Suprime-Cam survey
- · Blind analysis to test various systematics: PSF modeling error, photo-z, intrinsic alignment, baryon feedback
- \cdot 3.6% measurement on S₈= σ_8 ($\Omega_m/0.3$)^{0.45} =0.800+0.029_0.028 from auto cosmic shear power spectra
- · HSC is consistent with Planck, but has lower S₈ at $\sim 2 \sigma$ level similar to DES and KiDS
- · Other cosmological analyses are on-going
- Stay tuned for upcoming results!