

"Accelerating Universe in the Dark", YITP

Primordial Black Holes from R² gravity

Ying-li Zhang Tokyo University of Science 7, March, 2019

 Based on: Shi Pi, YZ, Qing-guo Huang, and Misao Sasaki, JCAP 1805 (2018) 042

Contents

- Basics on PBH formation
- Possible inflation models for PBH formation
- Our model: Scalar field in *R*² gravity
- Discussions

Spacetime diagram

 $\log L$

 $N = \log a$

 $N = \log a$

Bayesian reconstruction of the primordial power spectrum for 1<2300. (Planck 2015)

The resolution is lacking to say anything precise about higher l.

There are some constraints on small scales, but quite loose. (Bringmann et. al. 2011)

What is Primordial Black Hole?

- PBH = BH formed before the recombination epoch (i.e. z>>2000) (conventionally during the radiation-dominated era)
- Hubble sized region with $\delta \rho / \rho = O(1)$ collapses to form BH
- Such a large perturbation could be produced by inflation
- PBHs may dominate Dark Matter

Inflation Models for PBH Formation

- PBH will form if there is a bump in the primordial power spectrum for the curvature perturbation.
- This means there will be a "ultra-slow-roll" stage of inflation.
- Multifield: Scalar field in R² gravity (Shi Pi, YZ, Qing-guo Huang, and Misao Sasaki, JCAP 1805 (2018) 042)

Typical potential for 'inflation + massive field', where oscillations will be generated.

• This is equivalent to: $R + \frac{R^2}{6M} - \frac{1}{2}(\partial \chi) - V(\chi)$

Motivation

- A natural way to realize it is just R² gravity plus inflaton.
- R² gravity itself can generate inflation. (Starobinsky 1980)
- Also, it is the best-fit inflation model. (Planck 2015)
- It is equivalent to study the scalar field(s) in Starobinsky model.

Setup

 We propose the Lagrangian as the Starobinsky R² gravity plus a scalar field χ, nonminimally coupled to gravity

$$S_J = \int d^4x \sqrt{-g} \left\{ \frac{M_{\rm Pl}^2}{2} \left(R + \frac{R^2}{6M^2} \right) - \frac{1}{2} g^{\mu\nu} \partial_\mu \chi \partial_\nu \chi - V(\chi) - \frac{1}{2} \xi R \chi^2 \right\}.$$

• $V(\chi)$ is potential for χ , which we pick for the small-field form:

$$V(\chi) = V_0 - \frac{1}{2}m^2\chi^2 + \cdots$$

 ξ-term is the non-minimally coupled term to solve the initial condition problem.

Setup

- It has been proved that the action with R² is equivalent to Einstein-Hilbert action plus one scalar field (scalaron). (Whitt 1984, Maeda 1988)
- After transferred to Einstein frame, our model becomes Hilbert Einstein action with two scalar fields: scalaron ϕ + light field χ , with nontrivial metric in field space (Starobinsky et. al. 2001)

$$\begin{split} S_E &= \int d^4 x \sqrt{-\tilde{g}} \cdot \left\{ \frac{M_{\rm Pl}^2}{2} \tilde{R} - \frac{1}{2} \tilde{g}^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - \frac{1}{2} e^{-\sqrt{\frac{2}{3}} \frac{\phi}{M_{\rm Pl}}} g^{\mu\nu} \partial_\mu \chi \partial_\nu \chi \right. \\ &\left. - \frac{3}{4} M^2 M_{\rm Pl}^2 \left(1 - e^{-\sqrt{\frac{2}{3}} \frac{\phi}{M_{\rm Pl}}} + e^{-\sqrt{\frac{2}{3}} \frac{\phi}{M_{\rm Pl}}} \xi \frac{\chi^2}{M_{\rm Pl}^2} \right)^2 - e^{-2\sqrt{\frac{2}{3}} \frac{\phi}{M_{\rm Pl}}} V(\chi) \right\} \end{split}$$

EoM

• The equations of motion:

$$3M_{\rm Pl}^2 H^2 = \frac{1}{2}\dot{\phi}^2 + F^{-1}\frac{1}{2}\dot{\chi}^2 + \frac{3}{4}M^2 M_{\rm Pl}^2 \left[1 - F^{-1}\left(1 - \xi\frac{\chi^2}{M_{\rm Pl}^2}\right)\right]^2 + F^{-2}V(\chi),$$
$$\ddot{\phi} + 3H\dot{\phi} + \sqrt{\frac{3}{2}}M^2 M_{\rm Pl}F^{-1}\left\{1 - \xi\frac{\chi^2}{M_{\rm Pl}^2} + \frac{\dot{\chi}^2}{3M^2 M_{\rm Pl}^2} - F^{-1}\left[\left(1 - \xi\frac{\chi^2}{M_{\rm Pl}^2}\right)^2 + \frac{4V}{3M^2 M_{\rm Pl}^2}\right]\right\} = 0,$$

$$\ddot{\chi} + \left(3H - \sqrt{\frac{2}{3}}\frac{\dot{\phi}}{M_{\rm Pl}}\right)\dot{\chi} + 3M^2 \left[1 - F^{-1}\left(1 - \xi\frac{\chi^2}{M_{\rm Pl}^2}\right)\right]\xi\chi + F^{-1}V'(\chi) = 0,$$

• with
$$F = \exp\left(\sqrt{\frac{2}{3}}\frac{\phi}{M_{\rm Pl}}\right)$$
 and $V(\chi) = V_0 - \frac{1}{2}m^2\chi^2 + \cdots$,

Background solutions

We derive the background solutions by dividing into two stages:

Stage 1:
$$\kappa \phi \gg 1 \implies \text{slow rolling } \phi \text{ and } \chi$$

In this region, EOM are simplified as

Background solutions

We derive the background solutions by dividing into two stages:

Stage 1:
$$\left[\kappa \phi \gg 1 \right] \implies$$
 slow rolling ϕ and χ

In this region, EOM are simplified as

Background solutions

We derive the background solutions by dividing into two stages:

<u>Stage 1</u>: $\kappa \phi \gg 1 \implies \text{slow rolling } \phi \text{ and } \chi$

In this region, EOM are simplified as

End of Starobinsky inflation

Power Spectrum in the First Stage

• We use δN formalism to calculate the power spectrum in the first stage

$$\begin{split} P_{\zeta} &= N_{,\phi}^2 \langle \delta \phi^2 \rangle = \frac{3H^2}{32\pi^2 M_{\rm Pl}^2} \left(\frac{1 - 2F^{-1} + F^{-2} \left(1 + 4/\mu^2 \right)}{F^{-1} + F^{-2} \left(1 + 4/\mu^2 \right)} \right) \\ &= \frac{3M^2}{128\pi^2 M_{\rm Pl}^4} \frac{\left(1 - 2F^{-1} + F^{-2} \left(1 + 4/\mu^2 \right) \right)^3}{\left(F^{-1} + F^{-2} \left(1 + 4/\mu^2 \right) \right)^2}, \\ &= \frac{V_0}{24\pi^2 M_{\rm Pl}^4} \left(\frac{3}{16} \mu^2 \right) \frac{\left(1 - 2F^{-1} + F^{-2} \left(1 + 4/\mu^2 \right) \right)^3}{\left(F^{-1} + F^{-2} \left(1 + 4/\mu^2 \right) \right)^2}, \end{split}$$

• With the slow-roll parameters

$$\begin{aligned} \epsilon_{H}^{(1)} &= \frac{8}{3} \frac{\left(F - \left(1 + 4/\mu^{2}\right)\right)^{2}}{\left(F^{2} - 2F + \left(1 + 4/\mu^{2}\right)\right)^{2}}, \\ \eta_{H}^{(1)} &= \frac{8}{3} \frac{F\left(F^{2} - 2F\left(1 + 4/\mu^{2}\right) + \left(1 + 4/\mu^{2}\right)\right)}{\left(F^{2} - 2F + \left(1 + 4/\mu^{2}\right)\right)^{2}} \end{aligned}$$

<u>Stage 2</u>: $\kappa \phi \lesssim 1 \implies \text{slowing rolling } \chi$

In this region, the field ϕ quits the slow-roll region and trapped in the effective potential, with small oscillations. We use the method developed in A. J. Tolley and M. Wyman, "The Gelaton Scenario: Equilateral non-Gaussianity from

A. J. Tolley and M. Wyman, "The Gelaton Scenario: Equilateral non-Gaussianity from multi-field dynamics," Phys. Rev. D 81, 043502 (2010) doi:10.1103/PhysRevD.81.043502 [arXiv:0910.1853 [hep-th]].

Defining the effective potential as

$$V_{\rm eff} \equiv U(\phi) + \frac{1}{2} e^{-\alpha\kappa\phi} \tilde{g}^{\mu\nu} \partial_{\mu}\chi \partial_{\nu}\chi + e^{-2\alpha\kappa\phi} V(\chi)$$

The vacuum trajectory can be found as

$$3H^2 \frac{d\chi}{dN} \left[\left(1 - \kappa^2 \xi \chi^2\right)^2 + \frac{4\kappa^2}{3M^2} V \right] \approx \left(1 - \kappa^2 \xi \chi^2\right) V_{,\chi} + 4\kappa^2 \xi V \chi$$

Under the assumption $V_0 \gg m^2 \chi^2/2$, the solution can be found as

$$\chi \approx \chi_f \exp\left[\left(-\frac{1}{\kappa^2}\frac{m^2}{V_0} + 4\xi\right)(N - N_f)\right]$$

Furthermore, the slow-roll parameters can be calculated as

$$\begin{split} \epsilon_{H} &\equiv -\frac{\dot{H}}{H^{2}} = \frac{\kappa^{2}}{2} \frac{1}{1 + \frac{4}{\mu^{2}}} \left(\frac{d\chi}{dN} \right)^{2} = \frac{\kappa^{2}}{2} \left(4\xi - \frac{m^{2}}{\kappa^{2}V_{0}} \right)^{2} \frac{\chi^{2}}{1 + \frac{4}{\mu^{2}}}, \\ \eta_{H} &\equiv \frac{\dot{\epsilon}_{H}}{H\epsilon_{H}} = -\frac{d\ln\epsilon_{H}}{dN} = -\frac{2}{\chi} \frac{d\chi}{dN} = -2 \left(-\frac{m^{2}}{\kappa^{2}V_{0}} + 4\xi \right) \lesssim 0.01, \end{split} \qquad \epsilon_{H} = \frac{\eta_{H}^{2}}{8} \frac{\chi^{2}\kappa^{2}}{1 + \frac{4}{\mu^{2}}} \ll \eta_{H} \\ 0 \\ \eta_{H} &\equiv \frac{\dot{\epsilon}_{H}}{H\epsilon_{H}} = -\frac{d\ln\epsilon_{H}}{dN} = -\frac{2}{\chi} \frac{d\chi}{dN} = -2 \left(-\frac{m^{2}}{\kappa^{2}V_{0}} + 4\xi \right) \lesssim 0.01, \end{aligned} \qquad \epsilon_{H} = \frac{\eta_{H}}{8} \frac{\chi^{2}\kappa^{2}}{1 + \frac{4}{\mu^{2}}} \ll \eta_{H} \\ 0 \\ \eta_{H} &\equiv \frac{\dot{\epsilon}_{H}}{1 + \frac{4}{\mu^{2}}} \ll \eta_{H} \\ 0 \\ \eta_{H} &\equiv \frac{\dot{\epsilon}_{H}}{1 + \frac{4}{\mu^{2}}} \approx -\eta_{H} \approx -\eta_{H}$$

Oscillations of power spectrum

Now we study the oscillations of ϕ field around its classical vacuum trajectory by setting $\phi \rightarrow \phi_g + \Delta \phi$, so the second-order action can be expressed as

$$\begin{split} \Delta S_E^{(2)} &= \int d^4 x \sqrt{-g} \left[-\frac{1}{2} \left(\partial \Delta \phi \right)^2 - \frac{1}{2} \left(\frac{\partial^2 V_{\text{eff}}}{\partial \phi^2} \right) \Big|_{\phi = \phi_g} \Delta \phi^2 \right] \\ &\approx \int d^4 x \sqrt{-g} \left\{ -\frac{1}{2} \left(\partial \Delta \phi \right)^2 + \alpha^2 e^{-\alpha \kappa \phi_g} \left[\frac{3}{4} M^2 - e^{-\alpha \kappa \phi_g} \left(\frac{3}{2} M^2 + 2\kappa^2 V_0 \right) \Delta \phi^2 \right] \right\} \\ &\longrightarrow \quad \frac{d^2 \Delta \phi}{dN^2} - 3 \frac{d \Delta \phi}{dN} + \mu^2 \Delta \phi = 0 \\ &\longrightarrow \quad \Delta \phi = \beta e^{3(N-N_*)/2} \cos \left[\omega \left(N - N_* \right) + \theta \right] , \qquad \omega \equiv \sqrt{\mu^2 - \frac{9}{4}} \\ &\Delta \phi(N_*) \equiv \phi_* - \phi_g \qquad \dot{\Delta} \phi(N_*) = \dot{\phi}(N_*) \end{split}$$

- There is oscillation only for $~~\mu\gtrsim 2.08$
- There is also an upper bound for not violate inflation during the transition: $\,\mu \lesssim 8.95$

- Since ϕ is a heavy field, its perturbations are exponentially suppressed.
- We can use δN formalism to calculate the power spectrum in the second stage, mainly contributed by the quantum fluctuations of χ .
- The dependence of e-folding number can be calculated by its slow-roll EoM, which is dynamically coupled to $\Delta\phi$.

$$3H\left(1-\frac{1}{3}\sqrt{\frac{2}{3}}\frac{\dot{\phi}}{HM_{\rm Pl}}\right)\dot{\chi} + e^{-\sqrt{\frac{2}{3}}\frac{\phi}{M_{\rm Pl}}}V'(\chi) = 0.$$

$$\mathcal{P}_{\mathcal{R}}^{(0)} \equiv \frac{H^2}{8\pi\epsilon_{H}^{(2)}M_{\rm Pl}^2} \approx \frac{V_0}{24\pi^2 M_{\rm Pl}^2} \left(\frac{M_{\rm Pl}}{\chi_*}\right)^2 \frac{8}{\eta_{H}^{(2)}} e^{\frac{\eta_{H}^{(2)}}{2}(N-N_*)},$$

$$\mathbf{Large Enhancement}$$

$$\omega = \sqrt{\mu^2 - 9/4}$$

$$\omega = \sqrt{\mu^2 - 9/4}$$

$$\omega = \mathcal{P}_{\mathcal{R}}^{(0)} \left\{ 1 - \frac{2}{3}e^{\frac{3}{2}(N-N_*)} \ln \frac{F_*}{1 + \frac{4}{\mu^2}} \sqrt{1 + \Upsilon^2} \left[\omega \sin \left(\omega(N-N_*) + \tan^{-1} \Upsilon\right) - 6\cos \left(\omega(N-N_*) + \tan^{-1} \Upsilon\right) \right] \right\}^2,$$

$$\mathcal{P}_{\mathcal{R}}^{(0)} \equiv \frac{H^2}{8\pi\epsilon_{H}^{(2)}M_{\mathrm{Pl}}^2} \approx \frac{V_0}{24\pi^2 M_{\mathrm{Pl}}^2} \left(\frac{M_{\mathrm{Pl}}}{\chi_*}\right)^2 \frac{8}{\eta_{H}^{(2)}} e^{\frac{\eta_{H}^{(2)}}{2}(N-N_*)},$$

$$\mathbf{Large Enhancement}$$

$$\omega = \sqrt{\mu^2 - 9/4}$$

$$\omega = \mathcal{P}_{\mathcal{R}}^{(0)} \left\{ 1 - \frac{2}{3}e^{\frac{3}{2}(N-N_*)} \ln \frac{F_*}{1 + \frac{4}{\mu^2}} \sqrt{1 + \Upsilon^2} \left[\omega \sin \left(\omega(N-N_*) + \tan^{-1}\Upsilon\right) - 6\cos \left(\omega(N-N_*) + \tan^{-1}\Upsilon\right) \right] \right\}^2,$$
Order 1 pre-factor

PBH formation

• Initial mass fraction:

$$\beta(M) \sim \int_{\delta_c}^{\infty} P(\delta(M_H)) d\delta(M_H)$$

• For the Press-Schechter distribution:

$$\beta(M) = \operatorname{erfc}\left(\frac{\delta_c}{\sqrt{2}\sigma(M_H)}\right)$$

• And β can be transferred to the mass spectrum today by

$$f \sim 10^9 \left(\frac{M}{M_{\odot}}\right)^{1/2} \beta(M)$$

 n_s

Extension

Summary

- R^2 +scalar field \equiv two-field with non-trivial field metric.
- Scalar field may provide a second stage inflation after the end of Starobinsky-stage.
- The transition of two stages may give enhanced features on the power spectrum.
- This enhanced ``feature'' can be used to produce PBHs as dark matter.