Current and future constraints on gravitational wave non-Gaussianities

Maresuke Shiraishi

NIT, Kagawa college, Japan

07 / Mar / 2019 Accelerating Universe in the Dark @YITP

nearly scale-invariant symmetric (isotropic, parity-even, ...) almost Gaussian

Non-Gaussianity (NG) in the tensor sector is a key indicator to specify the true inflationary model

If primordial magnetic fields (PMFs) survive after inflation, they continue to generate tensor NGs squeezed type if PMF power is scale-invariant [MS +: 1103.4103]

e.g. Weyl gravity

There are already observational bounds from CMB!

 \star tensor f_{NL} parameters normalized by the scalar bispectra

equilateral
$$f_{\mathrm{NL}}^{ttt,\mathrm{eq}} \equiv \lim_{k_i \to k} \frac{B_{\mathbf{k}_1 \mathbf{k}_2 \mathbf{k}_3}^{2\ 2\ 2}}{B_{\mathbf{k}_1 \mathbf{k}_2 \mathbf{k}_3}^{\zeta \mathrm{eq}}(f_{\mathrm{NL}}^{\zeta \mathrm{eq}} = 1)}$$

squeezed

$$f_{\mathrm{NL}}^{ttt,\mathrm{sq}} \equiv \lim_{\substack{k_1 \to 0 \\ k_2 \to k_3}} \frac{B_{\mathbf{k}_1 \mathbf{k}_2 \mathbf{k}_3}^{2 \ 2 \ 2}}{B_{\mathbf{k}_1 \mathbf{k}_2 \mathbf{k}_3}^{\zeta \mathrm{loc}}(f_{\mathrm{NL}}^{\zeta \mathrm{loc}} = 1)}$$

squeezed \zeta\zeta>
$$f_{\mathrm{NL}}^{tss,\mathrm{sq}} \equiv \lim_{\substack{k_1 \to 0 \\ k_2 \to k_3}} \frac{B_{\mathbf{k}_1\mathbf{k}_2\mathbf{k}_3}^{2\ 0\ 0}}{B_{\mathbf{k}_1\mathbf{k}_2\mathbf{k}_3}^{\zeta\mathrm{loc}}(f_{\mathrm{NL}}^{\zeta\mathrm{loc}} = 1)}$$

Theoretical prediction of TTT

Observational bounds

		f NL ^{ttt,eq}	f NL ^{ttt,sq}		f _{NL} tss,sq
	WMAP T-only	600 ± 1500 [1409.0265]	220 ± 170 [1304.7277]		84 ± 49 [1710.06778]
	Planck 2015 T-only	400 ± 1500 [1502.01592]	290 [1502	± 180 2.01594]	_
	Planck 2015 T+E	0 ± 1300 [1502.01592]		_	_
• axion [Cook & Sort • axion [Agrawal +: 17	$\begin{aligned} xion-U(I) \ model: \ \xi &\equiv \frac{\alpha \dot{\phi} }{2fH} < 3.3 \\ xion-SU(2) \ model: \ \frac{r^2}{\Omega_A} < 500 \end{aligned}$			IMpc < 3r	nG $\frac{m_g^2}{H^2}$ < 3

In the next decade

Potential of B-mode bispectrum

Scale-dependent NGs

$$\mathcal{L} = -\frac{1}{2} \left(\partial\phi\right)^2 - V(\phi) - \frac{1}{2} \left(\partial\sigma\right)^2 - V(\sigma) - \frac{1}{4}F^2 - \frac{\alpha}{4f}\sigma F\tilde{F}$$

[e.g., Barnaby +: 1206.6117, Cook & Sorbo: 1307.7077, Ferreira & Sloth: 1409.5799]

Source modes roughly have a peak @ $k \sim k_* = -T_*^{-1}$

[Namba, Peloso, MS, Sorbo, Unal: 1509.07521]

similar results are expected in the GW bispectrum analysis

<u>Summary</u>

So far, no >2σ signal of f_{NL}^{ttt,eq} / f_{NL}^{ttt,sq} / f_{NL}^{tss,sq} in CMB temperature and E-mode polarization maps
 Planck 2019T+E bounds on f_{NL}^{ttt,eq} are coming soon!
 B-mode NG search is very meaningful & promising!

- BBB (e.g. axions, gauge fields, PMFs)
- BTT (e.g. massive gravity)
- BBT (e.g. Weyl gravity)

Of course there are also other possible models

Interferometer is also informative

(especially for the scale-dependent NG)

Please see MS in prep. (coming soon) for details