Dark energy and modified gravity theories: current status and prospects with the Euclid satellite.

Valeria Pettorino CEA Paris-Saclay, Département d'Astrophysique

@vpettorino - valeria.pettorino.com

Accelerating Universe in the Dark, Kyoto, 4-8 March

What drives cosmic acceleration?

A new fluid or a new force at cosmological scales?

Planck Paper XVI

Can we falsify a cosmological constant?

Can we distinguish among the models present in literature?

Casas, VP et al 2017

 $\boldsymbol{\mu}$ modifies the growth

Planck Dark Energy & Modified Gravity paper astro-ph 1502.01590 V.P. for the Planck collaboration

 $\boldsymbol{\eta}$ is the ratio of the gravitational potentials

Planck alone lies at the 2 σ limit Tension with Λ CDM at 3 σ when combining RSD+WL

	Planck+WL+RSD (present)
μ	~ 17%
η	~ 25%

 $\boldsymbol{\mu}$ modifies the growth

 η is the ratio of the gravitational potentials

Planck Dark Energy & Modified Gravity paper astro-ph 1502.01590 V.P. for the Planck collaboration

Planck alone lies at the 2 σ limit Tension with RSD+WL reduced (but some choice in data)

	Planck+WL+RSD (present)
μ	~ 17%
η	~ 25%

DE-related

Some tensions remain: $H_0 = 3.6 \sigma$ tension

$$H_0 = (67.27 \pm 0.60) \text{ km s}^{-1} \text{Mpc}^{-1} \text{ LCDM}$$

$$H_0 = (68.35 \pm 0.82) \text{ km s}^{-1} \text{Mpc}^{-1}, \quad (w_0 \text{ varying}),$$

$$H_0 = (68.34 \pm 0.83) \text{ km s}^{-1} \text{Mpc}^{-1}, \quad (w_0, w_a \text{ varying}),$$

 $H_0 = (73.48 \pm 1.66) \,\mathrm{km} \,\mathrm{s}^{-1} \mathrm{Mpc}^{-1}$

New generation of experiments

ESA/C. Carreau

Colombi/Mellie

Euclid

using different probes scanning the sky in slices

To confirm or disprove the standard picture

We want to test interactions at cosmological scales as in particle physics and value complementarity of probes

Laureijs etal 2011, Refregier 2009, Cimatti etal 2009

Satellite Mass 2200 kg Size: 4,5 m x 3m x 3m Telescope Primary mirror diameter 1,20 m

Instruments VIS the visible photometer NISP, the infra red spectro photometer

Euclid satellite

ESA medium class space mission selected in the program Cosmic Vision 2015-2025 Survey of 15000 deg² Field of view 0.5 deg²

The Euclid mission

Launch foreseen in 2022 from Kourou space base, by a Soyouz rocket

Picture Credit: Tom Jubb, Richard Massey (Durham University)

Surveys

1.2 m telescope

WIDE SURVEY

will cover about 1/3 of the entire sky outside the Galactic plane (15000 deg²);

it will achieve galaxy shear measurements for 30-40 galaxies/arcmin² and spectroscopic measurements for 3500-5000 galaxies/deg² with redshift accuracy of z < 0.001(1+z)

IMAGING

Measure shapes and distances (photometric redshift) of 1.5 billions galaxies

DEEP SURVEY

will be 2 magnitudes deeper than the Wide Survey, cover nearly 40 deg² in patches greater than 10 deg²

SPECTROSCOPY

Measures the tridimentional distribution of galaxies as a function of z, measuring 30 millions of redshifts between z ~ 0.7 and 2.

Picture Credit: Tom Jubb, Richard Massey (Durham University)

Telescope and instruments

The telescope feeds two instruments via a beam splitter. Reflected light to VIS, transmitted light to NISP

Same field of views, they will operate simultaneously in step-and-stare mode

VIS instrument

The VIS (visible band imager) instrument measures shapes with high resolution

Courtesy: Astrium and ESA Project office

NISP instrument

The NISP instrument provides both imaging and spectroscopy

It has 16 infrared detectors, covering more than 0.5 deg² with 0.3 arcsec pixels. Data volume: 180 Gbit/day NISP performs photometry or spectroscopy in sequence selecting a filter or grism wheel respectively

The NISP **imaging photometer** mode contains 3 filters (Y,J,H) in the 1-2 micron wavelength range.

The NISP slitless spectrometer mode contains 4 grisms to provide spectra in two bands with orthogonal directions.

Euclid is currently being assembled

(pict. from Dec 2018)

@Euclid_FR

@Euclid_NISP

Euclid NISP

Focal plane

Based on H2RG Teledyne detectors 2048 x 2048 pixels Pixel size: 18 μ m Spectral bandwidth: 0,9 μ m – 2 μ m The focal plane contains 16 H2RG which corresponds roughly to 64 millions pixels

Characteristics

160 kg 1 m x 0,5 m x 0,5 m Field of view : 0,78 x 0,73 deg² Focal plane cooled to 90K

Infra red camera, the biggest ever launched in space

the grism wheel assembly (GWA) is integrated with the NISP structure (27 Sept 2018)

Euclid NISP

Building of the NISP instrument is done under the leadership of the Laboratoire d'Astrophysique de Marseille (LAM, France).

@Euclid_NISP
@LAM_Marseille
@INFNPadova

Integrating the Electrical Model

@Euclid_NISP

Euclid NISP (7 Feb 19)

NISP in its black multi-layer insolation

VIS instrument

Base on CCD detectors from e2V 4056 x 4056 pixels Pixel size: 12 µm The focal plane contains 36 CCD which corresponds roughly to 600 millions pixels Focal plane cooled to 140K

Building of the VIS instrument is done under the leadership of the Mullard Space Science Laboratory (MSSL, United Kingdom).

Ground-based Observatories

The third instrument

Two types of measurements are required:

- A "large field" photometric survey based on 800 observation nights. (telescopes : CFHT, JST, Pan-Starrs, LSST, Blanco)

- A spectrometric survey from which data are used to calibrate the photometric redshifts: *Telescopes Keck (45 nights, North hemisphere) and VLT (40 nights, South hemisphere)*

Present and upcoming wide-field imagers relevant to Euclid

	Facility	Year	Aper.	FOV	IQ	CCD class	Туре	Hemisphere
	LSST	2021	6.6m	9.6 sq.deg.	0.8"	Deep depletion	Surveyor	South
٩I	Subaru	2013	8.2m	1.8 sq.deg.	0.6"	Fully depleted	Observatory	North
힌	Blanco	2013	4.0m	3.0 sq.deg.	0.9"	Fully depleted	Observatory	South
ē	JST	2018	2.5m	4.8 sq.deg.	0.7"	Deep depletion	Surveyor	North
ш	CFHT	2003	3.6m	1.0 sq.deg.	0.6"	EPI	Observatory	North
1	PS1	2008	1.5m	7.0 sq.deg.	1.0"	Fully depleted	Surveyor	North

Euclid Consortium organization

18 countries 285 institutes 1913 members 75 members "at large" 286 Alumni (October 2018)

ECL Support

- Support Office
- Coordination support
- Mission System
- Mission survey WG
- Calibration WG
- Science Performance Verification
- Tracking Team
- Communication
- Complementary data group
- Coordination Group
- Editorial Board

eesa

EST Euclid Science Team 10 members

Yannick Mellier (IAP)

NISP

France leads the consortium (33% of members) with Italy (25%) The other big contributors are Germany & United Kingdom (~10%), NASA, Japan (Subaru), Canada (CFHT)

Euclid Consortium Board (ECB) 22 members

SWG (Science Working Groups)

Cosmology

- Weak Lensing
- Galaxy Clustering
- Clusters
- CMB Cross Correlation
- Strong Lensing
- Cosmology theory
- Cosmological simulations

- Primeval Universe
- Galaxy & AGN evolution
- Local Universe
- Planets

Legacy

- Supernovae & transients
- Solar System Objects
- Milky Way & resolved stellar population

Consortium Meeting in May 2018, Bonn.

Euclid primary probes

Galaxy clustering

The power spectrum shape in several z-bins.

BAO in the radial and transverse directions measure H(z) and $D_A(z)$ respectively (and therefore sensitive to modifications in the growth (sensitive to μ)

Weak Lensing

Related to both gravitational potentials, which may not be equal beyond LCDM (sensitive to η).

Other powerful probes: CMB cross correlation with LSS, abundance of clusters, strong lensing

Joined in 2007

My contribution in the Euclid Consortium at present (2019):

Respond to the need of addressing joint goals that require an interface among different SWGs.

Theory WG

∢]

Cosmology Review with Euclid https://arxiv.org/abs/1606.00180

(Editor in chief)

co-coordinator (2017-2019) for IST:Forecast

to validate forecasts for GC, WL and XC

co-coordinator (2019 -) IST:Likelihood

to implement the likelihood for GC, WL and XC

CEA representative for Euclid France COMM (2017 -)

Euclid Inter-Science Taskforce: Forecasts

V.Pettorino with T.Kitching & A.Sanchez and main contributors: GC: D.Sapone, C.Carbone, S.Casas, D.Markovic, V.Yankelevich, A.Pourtsidou, ... WL: V.F.Cardone, S.Camera, M.Kilbinger, ... ; XC: M.Martinelli, I.Tutusaus, S.Ilic, A.Blanchard, ...

Euclid Inter-Science Taskforce: Forecasts

V.Pettorino with T.Kitching & A.Sanchez and main contributors: GC: D.Sapone, C.Carbone, S.Casas, D.Markovic, V.Yankelevich, A.Pourtsidou, ... WL: V.F.Cardone, S.Camera, M.Kilbinger, ... ; XC: M.Martinelli, I.Tutusaus, S.Ilic, A.Blanchard, ...

w_0, w_a flat									
	$\Omega_{ m m,0}$	$\Omega_{ m b,0}$	w_0	Wa	h	n _s	$\sigma_{8,0}$		
Linear setting									
GCs	0.080	0.10	0.20	0.66	0.0063	0.030	0.024		
Pessimistic setting									
GCs	0.17	0.26	0.39	1.4	0.020	0.063	0.045		
WL	0.043	0.48	0.16	0.59	0.21	0.036	0.019		
GC _s +WL	0.031	0.062	0.096	0.32	0.0066	0.0089	0.012		
$GC_s + WL + GC_{ph}$	0.025	0.053	0.085	0.27	0.0058	0.0068	0.0096		
$GC_s + WL + GC_{ph} + XC^{(GC_{ph},WL)}$	0.011	0.035	0.036	0.15	0.0053	0.0053	0.0049		
Optimistic setting									
GCs	0.051	0.068	0.15	0.45	0.0032	0.018	0.021		
WL	0.034	0.43	0.14	0.48	0.20	0.033	0.013		
GC _s +WL	0.022	0.039	0.077	0.24	0.0024	0.0052	0.0082		
$GC_s+WL+GC_{ph}$	0.014	0.025	0.050	0.15	0.0020	0.0030	0.0047		
$GC_{s}+WL+GC_{ph}+XC^{(GC_{ph},WL)}$	0.0060	0.015	0.025	0.092	0.0015	0.0019	0.0022		
DRE									

Cosmology and fundamental physics with the Euclid satellite Living Reviews in Relativity & <u>https://arxiv.org/abs/1606.00180</u>

Euclid and coupled dark energy

α

Pettorino etal 2012, Pettorino 2013

Testing μ and η with Euclid

Euclid can reach a precision of 1-2% after marginalizing over nonlinear prescription

Casas etal 2017

Modified expressions for cosmic shear, galaxy-galaxy lensing and galaxy clustering (applied to KiDS + GAMA) Alessio Spurio-Mancini, etal 2019

$$P_{ij}^{E}(\ell) = \left(\frac{3H_{0}^{2}\Omega_{m}}{2c^{2}}\right)^{2} \int_{0}^{\chi_{H}} d\chi \, \frac{g_{i}(\chi)g_{j}(\chi)}{a(\chi)^{2}} P_{\delta}\left(\frac{\ell+1/2}{\chi};\chi\right)$$
$$\times \mu\left(\frac{\ell+1/2}{\chi},\chi\right)^{2} \left(\frac{1+\eta\left(\frac{\ell+1/2}{\chi},\chi\right)}{2}\right)^{2},$$

Extra terms to account for generic deviations from GR

Survey I did for Euclid Theory WG: 41 classes of models suggested

Has the model ever been tested against any WL or GC data?

41 responses

Does a linear Boltzmann code exist for this scenario?

41 responses

If yes, has this Boltzmann code been compared and validated with other codes?

35 responses

If yes, has this Boltzmann code been compared and validated with other codes?

35 responses

Several valuable models, urgent challenge:

work needed to build reliable codes and predictions for non linear scales

[Galileons could have been excluded before GWs (Leloup etal 2019)]

Several known degeneracies $\Omega_M \quad \sigma_8 \quad m_ u \quad \Omega_{EDE} \quad ullet ullet ullet$

Strategies to break degeneracies

Combining different probes

Getting more data

Changing the statistics

Austin Peel, Valeria Pettorino, JL Starck 2018

ΛCDM or MG+neutrinos?

Austin Peel, V.Pettorino, J-L Starck et al 2018

astro-ph: 1805.05146

Results:

Peak count is the weak lensing statistics that best discriminates modified gravity from a constant

Follow up: machine learning improves the discrimination efficiency even more: <u>1810.11030</u> A.Peel, F. Lalande, Pettorino, JL Starck, etal 2019

Summary

- There are several valuable scenarios of dynamical Dark Energy and Modified Gravity which are in agreement with current data or yet to be tested
- Euclid: ESA space mission designed to test the dark universe through structure formation: combination of Weak Lensing and Galaxy Clustering. Launch 2022, assemblage is ongoing. Huge potential to test several dark energy and modified gravity scenarios.
- Challenges for Dark Energy and Modified Gravity tests:
 - reliable numerical codes -> LCDM is also the model for which we ~ trust codes
 - predictions at nonlinear scales -> often discard data or assume LCDM
 - degeneracies -> ex. fifth forces & neutrino masses
- Combining probes, large datasets and advanced statistics are three complementary strategies.

Strengthen synergy between theory and data, processing and interpretation, all the way to the Dark Universe.