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I. INTRODUCTION

The origin of the dark matter and the dark energy is one of the most important issues in current high energy
physics and cosmology. From observations, only 5% of the components of the current universe is visible to us. At
di↵erent scales, ranging from the galactic scale to the cosmic microwave background (CMB), there are many observed
phenomena to test for various models of dark matter and dark energy [1]. The cold dark matter model which treats
the dark matter as collisionless particles is successful at CMB and larger scales, but at the galactic scale, some
discrepancies were proposed [2]. Moreover, the particle dark matter remains elusive from the direct detection so far
[3]. One of the alternatives to the cold dark matter is the modified Newtonian dynamics or modified gravity [1, 2],
which focus on the small scale crisis that cold dark matter cannot explain. Although those modified gravity theories
seem to be less successful in producing the universe evolution picture agreed with CMB and large scale structure data,
they can explain multiple features in galaxy rotational curves such as Tully-Fisher relation [4], Renzo’s Rule [5], etc.

Recently, E. Verlinde proposed emergent modified gravity from volume contribution of entanglement entropy in
the de Sitter spacetime [6], which leads to the apparent dark matter. It is also related to the idea that Einstein
gravity can be emergent from the entropy force with area law [7]. Although the Verlinde’s derivation in [6] received
some doubts on the consistency in the literature [8], we find several Verlinde’s key ideas rather inspiring. One is the
possibility that our macroscopic notions of spacetime and gravity emerge from an underlying microscopic description,
encouraged by the recent development of entangled entropy and quantum information. Another one is viewing dark
matter as merely a gravitational response of the normal matter on the spacetime, so as to derive the dark matter
distribution around the galaxy, the Tully-Fisher relation.

In this paper, we propose a new viewpoint beyond Verlinde’s emergent gravity, which can be considered as a (3+1)
dimensional holographic screen embedded into a higher dimensional flat spacetime. We identify the holographic stress
energy tensor as that of the total dark components. We firstly construct a toy model, which provides a constraint
relation between the densities of dark matter, dark energy and baryonic matter, in the case considering the Lambda
cold dark matter (⇤CDM) parameterization. Furthermore, we generalize our toy model to the holographic Friedmann-
Robertson-Walker (FRW) universe in a flat bulk, and propose a new parameterization from the holographic model,
where the e↵ective dark matter and dark energy are emergent, and are identified with the Brown-York stress energy
tensor [9]. We also compare our approach to the Dvali-Gabadadze-Porrati(DGP) brane world model [10].

To produce the galaxy rotational curves, we further sketch a holographic elastic model with a de Sitter boundary
and fix an inconsistency in the Verlinde’s paper proposed in [8]. We recover the Tully-Fisher relation from the first law
of thermodynamics and elasticity of the “de Sitter medium”. The elasticity can also be realized in black fold approach
[11] or holographic models [12]. Notice here that we adopt the novel idea of elasticity of dark matter in the Verlinde’s
paper. Because the elasticity seems to capture the nature that the apparent dark matter is only the response of the
presence of the normal matters. In the end, we also comment on the relation of the current construction in this paper
with di↵erent scenarios such as brane world model and holographic models of the universe.

In section II, we first introduce the toy model, which leads to the relation between dark matter component and
baryonic matter component of the current universe. In section III, we generalize our toy model to the holographic
FRW universe, and compare it with the DGP brane world scenario. In section IV, we reproduce the Tully-Fisher
relation, with the help of holographic elasticity model and Verlinde’s assumptions. We briefly compare and discuss
the connection between our toy model and other scenarios, such as brane world models, holographic gravity, emergent
gravity and summarize our results in Section V.

II. A TOY CONSTRAINT FOR THE LATE TIME DARK UNIVERSE

We consider a 3+1 dimensional time-like hypersurface with intrinsic metric gµ⌫ and extrinsic curvature Kµ⌫ , which
is embedded as the boundary of a 4+1 dimensional flat bulk spacetime with finite volume. After adding the localized
stress energy tensor Tµ⌫ on the hypersurface, we assume that the induced Einstein field equations on the boundary
are modified as

Rµ⌫ � 1

2
Rgµ⌫ � 1

L
(Kµ⌫ �Kgµ⌫) = 

4

Tµ⌫ . (1)

The length scale L is related to the positive cosmological constant ⇤ = 3/L2. The Einstein constant 
4

= 8⇡G/c4,
G is the Newton gravitational constant and c is the speed of light. Equivalently, we can rewrite the above modified
Einstein field equations in (1) as

Rµ⌫ � 1

2
Rgµ⌫ = 

4

Tµ⌫ + 
4

hT iµ⌫ , (2)
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After considering (15) with T = 0, we have the identity

hT i2⇤
d� 1

� hT i⇤µ⌫hT iµ⌫⇤ = � ⇢̃⇤c
2

d� 1
hT i⇤. (22)

Thus, assuming hT iµ⌫ = hT iµ⌫⇤ ⌘ � ⇤
d

gµ⌫ in the constraint equation (14), the pure de Sitter spacetime satisfies the
above identity automatically. Notice here that the Brown-York stress energy tensor plays the role of dark energy and
there is no matter or dark matter yet in the set-up.

C. Adding Matters with ⇤CDM Parameterization

Next we consider to add small amount of normal matters in with uniform and isotropic distribution. We take
the assumption that the evolution of the late universe is governed by the ⇤CDM parameterization, and the dark
components are identified as our toy model in (9). Considering (19)(21), our assumption for the constraint relation
(15) becomes

hT i2
d� 1

� hT iµ⌫hT iµ⌫ = � ⇢̃⇤c
2

d� 1

⇥
T + hT i⇤. (23)

This is the main constraint relation in this section. Since in Einstein field equations (9), Tµ⌫ is the baryonic visible
matter with mass density ⇢B . The stress energy tensors of baryonic matter and radiation are,

Tµ⌫ = Tµ⌫
B + Tµ⌫

R , Tµ⌫
B = (⇢B)u

µu⌫ , Tµ⌫
R = (⇢R)u

µu⌫ + pRh
µ⌫ , (24)

where hµ⌫ = gµ⌫ + uµu⌫ , and u⌫ is the velocity in d dimensions. The dark energy and cold dark matter are all
assumed to be related to the extrinsic curvature, and hT iµ⌫ is the Brown-York stress energy tensor playing the role
of cold dark matter and dark energy, and

hT iµ⌫ = hT iµ⌫⇤ + hT iµ⌫D , hT iµ⌫⇤ = �(⇢⇤c
2)gµ⌫ , hT iµ⌫D = (⇢D)uµu⌫ . (25)

Putting them back into the constraint equation (23),

�d� 2

d� 1
⇢2D +

2

d� 1
⇢⇤⇢D +

d

d� 1
⇢2⇤ =

1

d� 1
⇢̃⇤

h
d⇢⇤ + ⇢D + ⇢B + ⇢R � (d� 1)

pR
c2

i
. (26)

If setting ⇢̃⇤ = ⇢⇤ and with equation (22), we arrive at

⇢2D =
⇢⇤

d� 2

h
⇢D � ⇢B � ⇢R + (d� 1)

pR
c2

i
. (27)

When d = 4, the stress energy tensor of radiation is traceless �⇢Rc
2 + 3pR = 0. If taking ⇢D ' 5⇢B , ⇢⇤ '

⇢c � ⇢D � ⇢B , we can recover the Verlinde’s constraint relation (5) approximately. In detail, we consider that our
university is uniform and isotropic at large scale, and take the FRW metric in 3 + 1 dimensions,

ds2d = gµ⌫dx
µdx⌫ = �c2dt2 + a(t)2


dr2

1� kr2
+ r2d⌦2

�
. (28)

In the spatial flat ⇤CDM model with k = 0, the Friedmann equation is given by

H(t)2

H2
0

= ⌦⇤ +
⌦D

a(t)3
+

⌦B

a(t)3
+

⌦R

a(t)4
. (29)

H0 is the Hubble constant today at t = t0 and

H(a) ⌘ ȧ(t)

a(t)
, H2

0 =
4c

4

3
⇢c, (30)

which gives the critical mass density of the universe as ⇢c =
3
4

H2
0

c4 and ȧ(t) is the derivative with respect to the time

t. If requiring a(t0) = 1, from (29) we have 1 = ⌦⇤ +⌦B +⌦D +⌦R, then dividing both sides of equation (27) by ⇢2c ,
we have

⌦2
D ' 1

2
⌦⇤(⌦D � ⌦B) (31)
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H(t)2

H2
0

' ⌦B

a(t)3
+ ⌦1/2

⇤


H(t)2

H2
0

+
⌦I

a(t)4

�1/2
(63)

H2

H2
0

' ⌦B

a3
+

s
⌦⇤

⇣H2

H2
0

+
⌦I

a4

⌘
(64)

Or equivalently we have

H(t)2

H2
0

=
⌦M

a(t)3
+

⌦⇤

2
+


⌦2

⇤

4
+

⌦⇤⌦M

a(t)3
+

⌦⇤⌦I

a(t)4

�1/2
. (65)

Notice here that by setting ⌦M = ⌦B + ⌦D and ⌦I = 0, we can recover the usual Friedmann equation of DGP
model in (52). Now let us compare it with the late time evolution of ⇤CDM model.

H(t)2

H2
0

=
⌦B

a(t)3
+

⌦D

a(t)3
+ ⌦⇤. (66)

If only setting ⌦M = ⌦B , and equal the right hand sides of (65) and (66) at a(t0) = 1, we arrive at

⌦2
D = ⌦⇤⌦I � ⌦⇤ (⌦D � ⌦B) . (67)

Thus, once taking

⌦I =
3

2
(⌦D � ⌦B) , (68)

we can recover the constraint relation of our toy model in (4). Considering (68) and plugging the ⇤CDM parameter-
ization (66) into the energy density (56) and pressure (57), we have

⇢H ' ⇢c(⌦⇤ + ⌦D), pH ' �⇢c⌦⇤. (69)

It is also consistent with the ansatz in our toy model (25). Again in order to make the presentation more clear, we here
neglected the contribution of radiation ⌦R and spacial curvature ⌦K , which can be easily included in the equations
above. Here ⌦I e↵ectively contributes to the emergent dark matter. More detailed studies of this holographic model
with non-zero ⌦I will appear in our future work.

IV. CONNECTION WITH VERLINDE’S APPARENT DARK MATTER

Inspired by the emergent gravity by Verlinde in [6], we have proposed the induced gravity from higher dimensional
flat spacetime which gives rise to the similar mechanism in the above sections. In this section, we are trying to
reconcile the inconsistency in Verlinde’s emergent gravity pointed out by [8]. We present a consistent derivation of
Tully-Fisher relation in the frame of the elastic model and try to resolve some issues in the original Verlinde’s story.
The elastic property can also be realized in the holographic models, for example, the blackfold approach [11], or
including the e↵ective mass terms in the bulk [12].

Thus, in order to embed Verlinde’s emergent gravity with elasticity into a bulk, we sketch the total action as
Sd+1 + Sd, where

Sd+1 =
1

2d+1

Z
M

dd+1x
p

�g̃ [Rd+1 � 2⇤d+1 + LM] +
1

d+1

Z
@M

ddx
p�gK, (70)

Sd =
1

2d

Z
@M

ddx
p�g (Rd � 2⇤d) +

Z
@M

ddx
p�gLM . (71)

In the bulk the Lagrange density LM represents the e↵ective term which can provide the holographic elasticity. g̃AB

is bulk metric, gµ⌫ is the induced metric on the boundary and K is the trace of the extrinsic curvature. Like in our
toy model, we can set ⇤d+1 = 0 in the bulk, and study the holographic response of elasticity. One may also add ⇤d

in the boundary action Sd, which plays the role of cosmological constant on the boundary theory, or the tension of
the boundary brane.

⌧�1
c ' k2

4⇡Tc
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The length scale L is related to the positive cosmological constant ⇤ = 3/L2. The Einstein constant 
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G is the Newton gravitational constant and c is the speed of light. Equivalently, we can rewrite the above modified
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where the gravitational accelerations gB and gD are given by their usual Newtonian expressions

gB(r) =
GMB(r)

r2
and gD(r) =

GMD(r)

r2
. (A5)

We will now discuss the consequences of equation (B3) and present it in di↵erent forms so that the comparison with
observations becomes more straightforward.

In this case one can simply di↵erentiate with respect to the radius while keeping the baryonic mass MB constant.
It is easily verified that this leads to the relation

gD(r) =
p
aMgB(r) with aM =

a
0

6
. (A6)

So let us go back to (B3) and take its derivative while taking into account the r dependence of MB(r). We introduce
the averaged mass densitities ⇢B(r) and ⇢D(r) inside a sphere of radius r by writing the integrated masses MB(r)
and MD(r) as

MB(r) =
4⇡r3

3
⇢B(r) and MD(r) =

4⇡r3

3
⇢D(r). (A7)

We also introduce the slope parameters

�B(r) = �d log ⇢B(r)

d log r
and �D(r) = �d log ⇢D(r)

d log r
. (A8)

When these slope parameters are approximately constant they give us the power law behavior of the averaged mass
densitities. By di↵erentiating (B1) with respect to r and rewriting the result using (B7) one finds that the average
apparent dark matter density obeys

⇢2D(r) =
⇣
4� �B(r)

⌘ a
0

8⇡G

⇢B(r)

r
. (A9)

For a central point mass MB the slope parameter �B is equal to 3, hence the prefactor would be equal to one. The
apparent dark matter has in that case a distribution with a slope �D = 2, which means that it falls o↵ like 1/r2. A
similar formula as (B9) holds in modified Newtonian dynamics, except without the prefactor.

As a final fun comment let us, just out of curiosity, take the formula (B9) and apply it to the entire universe. By
this we mean the following: we assume a constant baryonic mass density, so we set �B = 0, and in addition we take
the radius to be equal to the Hubble radius, i.e. we put r = L. Now we note that the critical mass density of the
universe equals

⇢c =
3H2

0

8⇡G
=

3a
0

8⇡G

1

L
= ⇤. (A10)

Hence, when we put r = L in the formula (B9) we obtain a relation between the standard cosmological density
parameters ⌦B = ⇢B/⇢crit and ⌦D = ⇢D/⇢crit of the baryonic and dark matter. We find

⌦2

D =
4

3
⌦B , ⇢2D =

4

3
⇢B⇢c. (A11)

This relation holds remarkably well for the values of ⌦D and ⌦B obtained by the WMAP and Planck collaborations. It
is far from clear that our derivation of the density formula (B9) would be applicable to the entire universe. For instance,
an immediate question that comes to mind is whether this relation continues to hold throughout the cosmological
evolution of the universe. We have worked exclusively in a static situation near the center of the static patch of a
dark energy dominated universe.

Appendix B: Review of Verlinde’s Emergent Gravity
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It is show in [12], that the EPR in 3+1 can be described by the worm hole in 4+1 dimensional AdS. In here,
3) Holography in Flat space. In our models, the holographic scree is embedded in one higher dimensional

spacetime. It is interesting to compare that with the holographic in flat space, where one sucussififul relasiation is
a flat holographic screen embeded in the accacting frame. The induced brown-York stress give the Rindler fluid,
[7]. which is quite similar to the Rindler holography. In there, the background is flat space time Rindler fluid with
⇢D = 0, pD = a, where a is the accaction. the geometry also gave the equation of state p = TUsU , with TU the
Untuh temperature. Also it is found that the Petrov Type I constraint equation give additional constrains relation of
induced stress tensor [8, 9], which is expected to generalized to our case.

4) AdS/dS and AdS/FRW.— mathematically, the dS or FRW metric can also be embedded in to the higher
dimensional AdS, as well as in the brane world model. Similar relation can be obtained from the constraint equations.
Although the holographic correspondence is more clear there, one meet another question on the origin of negative
cosmological constant. That’s why we choose the flat embedding in this paper, but that’s interesting for further study.

B. Conclusion

We give a new viewpoint on the dark components of our universe, which originates from the induced stress tensor
of higher dimensional flat spacetime.

Appendix A: Review of Verlinde’s Emergent Gravity

Recent theoretical progress indicates that spacetime and gravity emerge together from the entanglement structure
of an underlying microscopic theory. These ideas are best understood in Anti-de Sitter space, where they rely on the
area law for entanglement entropy. The extension to de Sitter space requires taking into account the entropy and
temperature associated with the cosmological horizon. Using insights from string theory, black hole physics and
quantum information theory we argue that the positive dark energy leads to a thermal volume law contribution to
the entropy that overtakes the area law precisely at the cosmological horizon. Due to the competition between area
and volume law entanglement the microscopic de Sitter states do not thermalise at sub-Hubble scales: they exhibit
memory e↵ects in the form of an entropy displacement caused by matter. The emergent laws of gravity contain
an additional ‘dark’ gravitational force describing the ‘elastic’ response due to the entropy displacement. We derive
an estimate of the strength of this extra force in terms of the baryonic mass, Newton’s constant and the Hubble
acceleration scale a

0

= cH
0

, and provide evidence for the fact that this additional ‘dark gravity force’ explains the
observed phenomena in galaxies and clusters currently attributed to dark matter.

One main result is the following integral relation for the surface mass density ⌃D for the apparent dark matter in
terms of the Newtonian potential for the baryonic matter

Z

B

✓
8⇡G

a
0

⌃D

◆
2
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@B
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a
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nidAi. (A1)

Since the integration region B can be chosen arbitrarily, we can also derive a local relation by first converting the
right hand side into a volume integral by applying Stokes’ theorem and then equating the integrands. In this way we
obtain
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0

⌃D

◆
2
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✓
d� 2

d� 1

◆
ri
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�B

a
0

ni

◆
. (A2)

For this situation we can take ni = xi/|x|, and easily evaluate the right hand side in terms of the mass distribution
⇢B of the baryonic matter.

When d = 4, this leads to
Z r

0

GM2

D(r0)

r02
dr0 =

MB(r)a0r

6
. (A3)

It allows one to make a direct comparison with observations. It describes the amount of apparent dark matter MD(r)
in terms of the amount of baryonic matter MB(r) for (approximately) spherically symmetric and isolated astronomical
systems in non-dynamical situations. After having determined MD(r) one can then compute the total acceleration

g(r) = gB(r) + gD(r) (A4)
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where the gravitational accelerations gB and gD are given by their usual Newtonian expressions

gB(r) =
GMB(r)

r2
and gD(r) =

GMD(r)

r2
. (A5)

We will now discuss the consequences of equation (B3) and present it in di↵erent forms so that the comparison with
observations becomes more straightforward.

In this case one can simply di↵erentiate with respect to the radius while keeping the baryonic mass MB constant.
It is easily verified that this leads to the relation

gD(r) =
p
aMgB(r) with aM =

a
0

6
. (A6)

a
0

= cH
0

(A7)

 = cH
0

=
c2

L
= a

0

(A8)

So let us go back to (B3) and take its derivative while taking into account the r dependence of MB(r). We introduce
the averaged mass densitities ⇢B(r) and ⇢D(r) inside a sphere of radius r by writing the integrated masses MB(r)
and MD(r) as

MB(r) =
4⇡r3

3
⇢B(r) and MD(r) =

4⇡r3

3
⇢D(r). (A9)

We also introduce the slope parameters

�B(r) = �d log ⇢B(r)

d log r
and �D(r) = �d log ⇢D(r)

d log r
. (A10)

When these slope parameters are approximately constant they give us the power law behavior of the averaged mass
densitities. By di↵erentiating (B1) with respect to r and rewriting the result using (B7) one finds that the average
apparent dark matter density obeys

⇢2D(r) =
⇣
4� �B(r)

⌘ a
0

8⇡G

⇢B(r)

r
. (A11)

For a central point mass MB the slope parameter �B is equal to 3, hence the prefactor would be equal to one. The
apparent dark matter has in that case a distribution with a slope �D = 2, which means that it falls o↵ like 1/r2. A
similar formula as (B9) holds in modified Newtonian dynamics, except without the prefactor.

As a final fun comment let us, just out of curiosity, take the formula (B9) and apply it to the entire universe. By
this we mean the following: we assume a constant baryonic mass density, so we set �B = 0, and in addition we take
the radius to be equal to the Hubble radius, i.e. we put r = L. Now we note that the critical mass density of the
universe equals

⇢c =
3H2

0

8⇡G
=

3a
0

8⇡G

1

L
= ⇤. (A12)

Hence, when we put r = L in the formula (B9) we obtain a relation between the standard cosmological density
parameters ⌦B = ⇢B/⇢crit and ⌦D = ⇢D/⇢crit of the baryonic and dark matter. We find

⌦2

D =
4

3
⌦B , ⇢2D =

4

3
⇢B⇢c. (A13)

This relation holds remarkably well for the values of ⌦D and ⌦B obtained by the WMAP and Planck collaborations. It
is far from clear that our derivation of the density formula (B9) would be applicable to the entire universe. For instance,
an immediate question that comes to mind is whether this relation continues to hold throughout the cosmological
evolution of the universe. We have worked exclusively in a static situation near the center of the static patch of a
dark energy dominated universe.
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At the core of MONDian theories is the assumption that in the limit of su�ciently weak acceleration, gravitational
dynamics becomes non-linear, with the non-linearities tailored to yield flat rotation curves of galaxies. In the weak-
field quasi-static limit, where the metric can be written ds2 = �(1 + 2 )dt2 + (1� 2�)dx2, the field equations must
reduce to  = � and

r · [µ
⇣

|r�|
a0

⌘
r�] = 4⇡G⇢, (A1)

where G is Newton’s constant, a
0

⇡ 10�10 m/s2, and ⇢ is the matter density. The phenomenological MOND function
µ(x) satisfies µ(x) ! 1 when x � 1, so that Newton’s law of gravity is recovered in the strong acceleration limit, and
µ(x) ! x when x ⌧ 1, which yields flat rotation curves of galaxies at large distances from matter sources. Hence,
the equations of motion for the potential become non-linear when |r�| ⌧ a

0

. This stands in stark contrast to GR,
where the weak-field limit is governed by linear equations of motion. Popular MONDian theories of gravity include
TeVeS [? ], generalized Einstein-Aether theories [? ], and bimetric theories (BIMOND) [? ? ]. Recently Verlinde [2]
suggested that similar modifications can naturally occur in entropic gravity [1].

MONDian modifications to GR can alter gravitational wave physics in at least two ways. First, since MOND is an
acceleration based modification of gravity, MONDian theories can violate the equivalence principle. A consequence
of this is that gravitational waves can propagate subluminally. Second, since MONDian theories are non-linear in
the weak field limit, gravitational waves can by governed by non-linear equations, even in the weak-field limit. As
we elaborate on below, these features have unsavory consequences and can be used to restrict the set of allowed
MONDian theories.

As was pointed out long ago [? ], if the speed of gravitational waves is c
g

< 1 (in units where c = 1), then high
energy cosmic rays traveling at speed v ! 1 will lose energy via the emission of gravitational Cherenkov radiation,
with an energy loss rate dependent on the di↵erence 1 � c

g

. The observation of high energy cosmic rays on earth,
combined with an estimate of their distance of propagation, then sets lower bounds on c

g

, which have been estimated
to be 1� c

g

. 10�15 [? ? ]. In the MOND limit of the Einstein-Aether theory of Ref. [? ], we demonstrate that the
speed of gravitational waves depends on the local gravitational potential and generically cannot be set equal to the
speed of light, and that Cherenkov losses are unavoidable without making the theory pathological. These features
make this theory an unacceptable theory of gravity.

Second, if gravitational wave dynamics are non-linear in the weak-field limit, gravitational waves emitted in black
hole merger events can interact with themselves as well as with other gravitational waves, e↵ectively scrambling
the structure of the original waveforms as they propagate to earth. LIGO’s recent observation of GW150914 had
a gravitational waveform completely consistent with GR [? ], suggesting no such scrambling e↵ect. A natural
expectation is therefore that gravitational waves must satisfy linear equations of motion in the weak-field limit of any
acceptable theory of gravity.

We argue that interactions between gravitational wave packets in the weak-field limit of BIMOND [? ] alters the
structure of the original waveforms and can even lead to singular evolution. Therefore, if BIMOND reduces to GR in
the strong field limit — and thereby yields the same initial gravitational waveforms as GR in merger events — the
waveforms observed far away would not look anything like those predicted by GR. In BIMOND we argue non-linear
interactions become important at distances on the order 0.3 Gpc from merger events. In contrast, gravitational waves
from GW150914 are estimated to have propagated 0.4 Gpc. Our results and the experimental data from LIGO suggest
that BIMOND in its present form is not an acceptable theory of modified gravity.

Appendix B: Modified Entropy Gravity

In addition to the metric gµ⌫ , Einstein-Aether theories contain a time-like vector field Aµ which satisfies A2 = �1
and defines a preferred frame. Following Ref. [? ] we consider the gravitational action,

S =
1

16⇡G

Z
d4x

p
g
⇥
R+M2F( K

M2 ) + �(A2+1)
⇤
+ S

mat

, (B1)

where K ⌘ K↵�
��r↵A�r�A� is a quadratic function of derivatives of Aµ. In Eq. (B1) � is a Lagrange multiplier

which inforces the constraint A2 = �1, M is a constant with dimensions of mass, and S
mat

is the matter action.
The phenomenological function F determines the MOND function µ in (A1). The most general expression for K↵�

µ⌫

involving no derivatives reads

K↵�
�� ⌘ c

1

g↵�g�� + c
2

�↵� �
�
� + c

3

�↵� �
�
� + c

4

A↵A�g�� , (B2)
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expectation is therefore that gravitational waves must satisfy linear equations of motion in the weak-field limit of any
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We argue that interactions between gravitational wave packets in the weak-field limit of BIMOND [? ] alters the
structure of the original waveforms and can even lead to singular evolution. Therefore, if BIMOND reduces to GR in
the strong field limit — and thereby yields the same initial gravitational waveforms as GR in merger events — the
waveforms observed far away would not look anything like those predicted by GR. In BIMOND we argue non-linear
interactions become important at distances on the order 0.3 Gpc from merger events. In contrast, gravitational waves
from GW150914 are estimated to have propagated 0.4 Gpc. Our results and the experimental data from LIGO suggest
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Appendix B: Modified Entropy Gravity
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is the matter action.
The phenomenological function F determines the MOND function µ in (A1). The most general expression for K↵�
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where the ci are dimensionless contants. Following [? ] we shall set M = ✏2a
0

with ✏ a bookkeeping parameter which
can be set to one after all calculations.

The Einstein-Aether equations of motion read

Rµ⌫ � 1

2

Rgµ⌫ = Tµ⌫ + 8⇡GTmat

µ⌫ , (B3a)

r↵[F 0J↵
� ]� F 0y� = 2�A� , (B3b)

with Tmat

µ⌫ the matter stress and T↵� the vector stress,

T↵� = 1

2

r�{F 0[J �
(↵ A�) � J�

(↵A�) � J
(↵�)A

�]} (B4)

� F 0Y↵� + 1

2

g↵�M2F + �A↵A� ,

with

Y↵� = �c
1

[r⌫A↵r⌫A� �r↵A⌫r�A
⌫ ] (B5a)

�c
4

(A ·rA↵)(A ·rA�),

J↵
� = 2K↵�

��r�A
� , (B5b)

y� = 2c
4

r�Aµ(A ·rAµ). (B5c)

We wish to study Einstein-Aether waves in the MOND limit, particularly waves propagating in the background of
a weak, static and slowly varying gravitational field. Our goal here is to demonstrate that the propagation speeds
depend on the local background fields and cannot be set equal to the speed of light for all modes. To this end let
us first consider static, weak field, and slowly varying solutions to the Einstein-Aether system. Following [? ] we
consider the ansatz,

gµ⌫(t,x) = ⌘µ⌫ � 2✏�(✏x)�µ⌫ , (B6a)

Aµ(t,x) = [�1 + ✏�(✏x)]�µ0, (B6b)

and solve the equations of motion in the ✏ ! 0 limit. The above ansatz satisfies A2 = �1 +O(✏2). In the ✏ ! 0 limit
the Einstein-Aether equations of motion (B3) reduce to the MOND equation (A1) with µ(x) = x provided [? ]

F(x) = 1

c1�c4

h
�2x+ 4

3

p
�c1+c4

x3/2
i
. (B7)

A real-valued action therefore requires c
1

� c
4

< 0.

Consider now the ansatz

gµ⌫(t,x) = ⌘µ⌫ � 2✏�(✏x)�µ⌫ + ⇣ hµ⌫e
�i!t+ik·x, (B8a)

Aµ(t,x) = [�1 + ✏�(✏x)]�µ0 + ⇣ aµe
�i!t+ik·x, (B8b)

which describes small perturbations propagating on top of the static background potential �. Here ⇣ is another
bookkeeping parameter which parameterizes the strength of the propagating modes. We shall consider the ✏ ! 0
limit with ⇣ ⌧ ✏2. In this limit the exponentials vary in space much more rapidly than the potential. Note that hµ⌫

and aµ also depend on x. However, this dependence can be neglected at leading order. For simplicity we assume the
potential vanishes as the point x of interest and that k and r� point in the same direction at x.

The equations of motion for hµ⌫ and aµ, as well as the dispersion relation !(k), follow from substituting the ansatz
(B8) into (B3). With ⇣ ⌧ ✏2 and the presence of the background potential, the equations of motion for hµ⌫ and aµ
are linear. There are a total of five propagating modes, including two tensor modes, two vector modes, and one scalar
mode. We find linear dispersion relations ! = c

g

k for all modes, with propagation speeds,
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where the gravitational accelerations gB and gD are given by their usual Newtonian expressions

gB(r) =
GMB(r)

r2
and gD(r) =

GMD(r)

r2
. (A5)

We will now discuss the consequences of equation (B3) and present it in di↵erent forms so that the comparison with
observations becomes more straightforward.

In this case one can simply di↵erentiate with respect to the radius while keeping the baryonic mass MB constant.
It is easily verified that this leads to the relation

gD(r) =
p
aMgB(r) with aM =

a
0

6
. (A6)

So let us go back to (B3) and take its derivative while taking into account the r dependence of MB(r). We introduce
the averaged mass densitities ⇢B(r) and ⇢D(r) inside a sphere of radius r by writing the integrated masses MB(r)
and MD(r) as

MB(r) =
4⇡r3

3
⇢B(r) and MD(r) =

4⇡r3

3
⇢D(r). (A7)

We also introduce the slope parameters

�B(r) = �d log ⇢B(r)

d log r
and �D(r) = �d log ⇢D(r)

d log r
. (A8)

When these slope parameters are approximately constant they give us the power law behavior of the averaged mass
densitities. By di↵erentiating (B1) with respect to r and rewriting the result using (B7) one finds that the average
apparent dark matter density obeys

⇢2D(r) =
⇣
4� �B(r)

⌘ a
0

8⇡G

⇢B(r)

r
. (A9)

For a central point mass MB the slope parameter �B is equal to 3, hence the prefactor would be equal to one. The
apparent dark matter has in that case a distribution with a slope �D = 2, which means that it falls o↵ like 1/r2. A
similar formula as (B9) holds in modified Newtonian dynamics, except without the prefactor.

As a final fun comment let us, just out of curiosity, take the formula (B9) and apply it to the entire universe. By
this we mean the following: we assume a constant baryonic mass density, so we set �B = 0, and in addition we take
the radius to be equal to the Hubble radius, i.e. we put r = L. Now we note that the critical mass density of the
universe equals

⇢c =
3H2
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Hence, when we put r = L in the formula (B9) we obtain a relation between the standard cosmological density
parameters ⌦B = ⇢B/⇢crit and ⌦D = ⇢D/⇢crit of the baryonic and dark matter. We find

⌦2
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4

3
⌦B , ⇢2D =

4

3
⇢B⇢c. (A11)

This relation holds remarkably well for the values of ⌦D and ⌦B obtained by the WMAP and Planck collaborations. It
is far from clear that our derivation of the density formula (B9) would be applicable to the entire universe. For instance,
an immediate question that comes to mind is whether this relation continues to hold throughout the cosmological
evolution of the universe. We have worked exclusively in a static situation near the center of the static patch of a
dark energy dominated universe.
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We will now discuss the consequences of equation (B3) and present it in di↵erent forms so that the comparison with
observations becomes more straightforward.

In this case one can simply di↵erentiate with respect to the radius while keeping the baryonic mass MB constant.
It is easily verified that this leads to the relation
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So let us go back to (B3) and take its derivative while taking into account the r dependence of MB(r). We introduce
the averaged mass densitities ⇢B(r) and ⇢D(r) inside a sphere of radius r by writing the integrated masses MB(r)
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It is show in [12], that the EPR in 3+1 can be described by the worm hole in 4+1 dimensional AdS. In here,
3) Holography in Flat space. In our models, the holographic scree is embedded in one higher dimensional

spacetime. It is interesting to compare that with the holographic in flat space, where one sucussififul relasiation is
a flat holographic screen embeded in the accacting frame. The induced brown-York stress give the Rindler fluid,
[7]. which is quite similar to the Rindler holography. In there, the background is flat space time Rindler fluid with
⇢D = 0, pD = a, where a is the accaction. the geometry also gave the equation of state p = TUsU , with TU the
Untuh temperature. Also it is found that the Petrov Type I constraint equation give additional constrains relation of
induced stress tensor [8, 9], which is expected to generalized to our case.

4) AdS/dS and AdS/FRW.— mathematically, the dS or FRW metric can also be embedded in to the higher
dimensional AdS, as well as in the brane world model. Similar relation can be obtained from the constraint equations.
Although the holographic correspondence is more clear there, one meet another question on the origin of negative
cosmological constant. That’s why we choose the flat embedding in this paper, but that’s interesting for further study.

B. Conclusion

We give a new viewpoint on the dark components of our universe, which originates from the induced stress tensor
of higher dimensional flat spacetime.

Appendix A: Review of Verlinde’s Emergent Gravity

Recent theoretical progress indicates that spacetime and gravity emerge together from the entanglement structure
of an underlying microscopic theory. These ideas are best understood in Anti-de Sitter space, where they rely on the
area law for entanglement entropy. The extension to de Sitter space requires taking into account the entropy and
temperature associated with the cosmological horizon. Using insights from string theory, black hole physics and
quantum information theory we argue that the positive dark energy leads to a thermal volume law contribution to
the entropy that overtakes the area law precisely at the cosmological horizon. Due to the competition between area
and volume law entanglement the microscopic de Sitter states do not thermalise at sub-Hubble scales: they exhibit
memory e↵ects in the form of an entropy displacement caused by matter. The emergent laws of gravity contain
an additional ‘dark’ gravitational force describing the ‘elastic’ response due to the entropy displacement. We derive
an estimate of the strength of this extra force in terms of the baryonic mass, Newton’s constant and the Hubble
acceleration scale a

0

= cH
0

, and provide evidence for the fact that this additional ‘dark gravity force’ explains the
observed phenomena in galaxies and clusters currently attributed to dark matter.

One main result is the following integral relation for the surface mass density ⌃D for the apparent dark matter in
terms of the Newtonian potential for the baryonic matter
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Since the integration region B can be chosen arbitrarily, we can also derive a local relation by first converting the
right hand side into a volume integral by applying Stokes’ theorem and then equating the integrands. In this way we
obtain
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For this situation we can take ni = xi/|x|, and easily evaluate the right hand side in terms of the mass distribution
⇢B of the baryonic matter.

When d = 4, this leads to
Z r

0

GM2

D(r0)

r02
dr0 =

MB(r)a0r

6
. (A3)

It allows one to make a direct comparison with observations. It describes the amount of apparent dark matter MD(r)
in terms of the amount of baryonic matter MB(r) for (approximately) spherically symmetric and isolated astronomical
systems in non-dynamical situations. After having determined MD(r) one can then compute the total acceleration

g(r) = gB(r) + gD(r) (A4)
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In the next subsection we will use this relation for a spherically symmetric situation to derive the mass density for
the apparent dark matter from a given distribution of baryonic matter. For this situation we can take ni = xi/|x|,
and easily evaluate the right hand side in terms of the mass distribution ⇢B of the baryonic matter.

When d = 4, this leads to
Z r
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GM2

D(r0)

r02
dr0 =

MB(r)a0r

6
. (B3)

This is the main formula and central result of our paper, since it allows one to make a direct comparison with
observations. It describes the amount of apparent dark matter MD(r) in terms of the amount of baryonic matter
MB(r) for (approximately) spherically symmetric and isolated astronomical systems in non-dynamical situations.
After having determined MD(r) one can then compute the total acceleration

g(r) = gB(r) + gD(r) (B4)

where the gravitational accelerations gB and gD are given by their usual Newtonian expressions

gB(r) =
GMB(r)

r2
and gD(r) =

GMD(r)

r2
. (B5)

We will now discuss the consequences of equation (B3) and present it in di↵erent forms so that the comparison with
observations becomes more straightforward.

In this case one can simply di↵erentiate with respect to the radius while keeping the baryonic mass MB constant.
It is easily verified that this leads to the relation

gD(r) =
p
aMgB(r) with aM =

a
0

6
. (B6)

So let us go back to (B3) and take its derivative while taking into account the r dependence of MB(r). We introduce
the averaged mass densitities ⇢B(r) and ⇢D(r) inside a sphere of radius r by writing the integrated masses MB(r)
and MD(r) as

MB(r) =
4⇡r3

3
⇢B(r) and MD(r) =

4⇡r3

3
⇢D(r). (B7)

We also introduce the slope parameters

�B(r) = �d log ⇢B(r)

d log r
and �D(r) = �d log ⇢D(r)
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. (B8)
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This is the main formula and central result of our paper, since it allows one to make a direct comparison with
observations. It describes the amount of apparent dark matter MD(r) in terms of the amount of baryonic matter
MB(r) for (approximately) spherically symmetric and isolated astronomical systems in non-dynamical situations.
After having determined MD(r) one can then compute the total acceleration
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We will now discuss the consequences of equation (B3) and present it in di↵erent forms so that the comparison with
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So let us go back to (B3) and take its derivative while taking into account the r dependence of MB(r). We introduce
the averaged mass densitities ⇢B(r) and ⇢D(r) inside a sphere of radius r by writing the integrated masses MB(r)
and MD(r) as

MB(r) =
4⇡r3

3
⇢B(r) and MD(r) =

4⇡r3

3
⇢D(r). (B7)

We also introduce the slope parameters

�B(r) = �d log ⇢B(r)

d log r
and �D(r) = �d log ⇢D(r)

d log r
. (B8)

9

where the gravitational accelerations gB and gD are given by their usual Newtonian expressions
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We will now discuss the consequences of equation (B3) and present it in di↵erent forms so that the comparison with
observations becomes more straightforward.

In this case one can simply di↵erentiate with respect to the radius while keeping the baryonic mass MB constant.
It is easily verified that this leads to the relation
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So let us go back to (B3) and take its derivative while taking into account the r dependence of MB(r). We introduce
the averaged mass densitities ⇢B(r) and ⇢D(r) inside a sphere of radius r by writing the integrated masses MB(r)
and MD(r) as

MB(r) =
4⇡r3

3
⇢B(r) and MD(r) =

4⇡r3

3
⇢D(r). (A9)

We also introduce the slope parameters

�B(r) = �d log ⇢B(r)

d log r
and �D(r) = �d log ⇢D(r)

d log r
. (A10)

When these slope parameters are approximately constant they give us the power law behavior of the averaged mass
densitities. By di↵erentiating (B1) with respect to r and rewriting the result using (B7) one finds that the average
apparent dark matter density obeys
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4� �B(r)
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0
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r
. (A11)

For a central point mass MB the slope parameter �B is equal to 3, hence the prefactor would be equal to one. The
apparent dark matter has in that case a distribution with a slope �D = 2, which means that it falls o↵ like 1/r2. A
similar formula as (B9) holds in modified Newtonian dynamics, except without the prefactor.

As a final fun comment let us, just out of curiosity, take the formula (B9) and apply it to the entire universe. By
this we mean the following: we assume a constant baryonic mass density, so we set �B = 0, and in addition we take
the radius to be equal to the Hubble radius, i.e. we put r = L. Now we note that the critical mass density of the
universe equals

⇢c =
3H2
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1

L
= ⇤. (A12)

Hence, when we put r = L in the formula (B9) we obtain a relation between the standard cosmological density
parameters ⌦B = ⇢B/⇢crit and ⌦D = ⇢D/⇢crit of the baryonic and dark matter. We find

⌦2

D =
4

3
⌦B , ⇢2D =

4

3
⇢B⇢c. (A13)

This relation holds remarkably well for the values of ⌦D and ⌦B obtained by the WMAP and Planck collaborations. It
is far from clear that our derivation of the density formula (B9) would be applicable to the entire universe. For instance,
an immediate question that comes to mind is whether this relation continues to hold throughout the cosmological
evolution of the universe. We have worked exclusively in a static situation near the center of the static patch of a
dark energy dominated universe.
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FIG. 2. Left: The e↵ective scalar field �(z) in terms of the redshift z, which is related to the swampland criterion 1 in (2);
Right: The shape of the e↵ective potential V (�) in terms of �. The red circle indicates the present value of �(z)|z=0 ' 0.65MP

for the hEDU model, and the arrow indicates the direction for the future. The parameters in the Friedmann equation (18) are
taken from Table. II.

With the e↵ective potentials, now we can check on the second Swampland Criterion in (3), or say, the refined de
Sitter conjecture. We define the following parameters

�1 ⌘ MP
V 0

V
, V 0 ⌘ dV (�)

d�
=

V̇ (t)

�̇(t)
, (24)

�2 ⌘ M2
P

V 00

V
, V 00 ⌘ d

d�

dV (�)

d�
=

1

�̇(t)

d

dt

h V̇ (t)

�̇(t)

i
. (25)

It is straightforward to plot the numerical result of �1(z) and �2(z) in Figure 3. Thus, we can see that at the present
z = 0, �1(0),�2(0) ⇠ O(1), which is the minimum value between z = 0 and z = 1. In the future infinity, both
of the metric solutions in the sDGP and hEDU models will approach the de Sitter spacetime. We can see that
�1(z)|z!�1 ! 0 from Figure 3. It is because we only consider the late time universe, and our e↵ective potential only
has the minimum in Figure 2. Thus, the first condition in the second swampland criterion in (3) is satisfied at present,
but in tension with the model in the future.

FIG. 3. The parameters �1 ⌘ MP
V 0

V in (24) and �2 ⌘ M2
P

V 00

V in (25), which are plotted in terms of the redshift z. They are
related to the swampland criterion 2 in (3).

It is interesting to notice that �2(z) is still non-vanishing at the future infinity �2(z)|z!�1 ⇠ O(1), which can be
tested with the potential in either (39) or (40) . Thus, we can see that in both of the sDGP and hEDU models, we
still have �2(z) � c3 ⇠ O(1). Or say, near the minimum of the e↵ective potential, we have the condition

M2
P |rirjV | � c3V, c3 ⇠ O(1). (26)

Thus, we can suggest that if the condition (26) can be included in the refined de Sitter conjecture, then some
braneworld models [41] with an asymptotic dS spacetime at the future infinity might be included. Similarly, one
can see for example, an interesting embedding of the generalized models of the Randall-Sundrum [42, 43] braneworld
scenarios within string theory has been discussed in [44].

a0 = 2⇡ac (27)

FMilgrom = ma =

(
maN , a � ac

m
p
aNac, a ⌧ ac

(28)
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FEntropy = m

q
a2 + a20 � a0

�
(29)

=

(
maN , a � ac

m
p
aNac, a ⌧ ac

(30)

Conclusion and Discussion. — We study a modified gravity model of the late time accelerating universe,
especially the behavior of the universe evolution including the dark sector. We treat the whole dark sector as the
holographic dark fluid on the FRW hypersurface in a flat bulk [6]. After using the SNIa and H0 data, we fit a new
set of the parameters comparing to the LCDM model. The matter component ⌦m in Table I is very small and ⌦I

e↵ectively contributes to the dark sector, including apparent dark matter component. The data fitting matches well
with the observations and our theoretical assumption.

This hEDU model: emergent dark universe model from the holographic viewpoint, can be implemented into the
improved sDGP braneworld scenario. We also check the recently proposed swampland criteria on the model and
the result is interesting. Especially notice that the potential V (�) is asymptotically flat in the far future z ! �1.
The metric solution is asymptotic de Sitter, which seems to end up in the swampland. One can also see that the
swampland criterion parameters �1 and �2 are of O(1) at present z = 0, but �1 approaches zero and �2 approaches
a positive constant in the future infinity.

Despite this result, we do not think this completely means that the hEDU model is in the swampland. One should
notice that we do not have an explicit scalar field and potential. The stress-energy tensor of the holographic fluid
which the potential can be derived from is e↵ective at the low energy. The sDGP braneworld model shares similar
behavior as the hEDU model in the far future, where the universe is asymptotic de-Sitter, although the current
universe satisfies the criteria. One can hope to bring both models back to the string landscape by evoking a phase
change of the universe, which is beyond the discussion of the e↵ective low energy behavior presented here.

Another comment we would like to add here is the possible extension of the refined de Sitter conjecture as pro-
posed in (26). The refined conjecture in [11] is motivated by the distance swampland conjecture, Bousso’s covariant
entropy bound and phenomenological counter-examples including Higgs vacuum and pion potentials. An alternative
refined de Sitter conjecture conjecture can also be found in [45]. We discuss the possible condition (26) here for a
phenomenological reason, as it can include certain top-down based brane-world scenarios.
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FIG. 2. Left: The e↵ective scalar field �(z) in terms of the redshift z, which is related to the swampland criterion 1 in (2);
Right: The shape of the e↵ective potential V (�) in terms of �. The red circle indicates the present value of �(z)|z=0 ' 0.65MP

for the hEDU model, and the arrow indicates the direction for the future. The parameters in the Friedmann equation (18) are
taken from Table. II.

With the e↵ective potentials, now we can check on the second Swampland Criterion in (3), or say, the refined de
Sitter conjecture. We define the following parameters

�1 ⌘ MP
V 0

V
, V 0 ⌘ dV (�)

d�
=

V̇ (t)

�̇(t)
, (24)

�2 ⌘ M2
P

V 00

V
, V 00 ⌘ d

d�

dV (�)

d�
=

1

�̇(t)

d

dt

h V̇ (t)

�̇(t)

i
. (25)

It is straightforward to plot the numerical result of �1(z) and �2(z) in Figure 3. Thus, we can see that at the present
z = 0, �1(0),�2(0) ⇠ O(1), which is the minimum value between z = 0 and z = 1. In the future infinity, both
of the metric solutions in the sDGP and hEDU models will approach the de Sitter spacetime. We can see that
�1(z)|z!�1 ! 0 from Figure 3. It is because we only consider the late time universe, and our e↵ective potential only
has the minimum in Figure 2. Thus, the first condition in the second swampland criterion in (3) is satisfied at present,
but in tension with the model in the future.

FIG. 3. The parameters �1 ⌘ MP
V 0

V in (24) and �2 ⌘ M2
P

V 00

V in (25), which are plotted in terms of the redshift z. They are
related to the swampland criterion 2 in (3).

It is interesting to notice that �2(z) is still non-vanishing at the future infinity �2(z)|z!�1 ⇠ O(1), which can be
tested with the potential in either (39) or (40) . Thus, we can see that in both of the sDGP and hEDU models, we
still have �2(z) � c3 ⇠ O(1). Or say, near the minimum of the e↵ective potential, we have the condition

M2
P |rirjV | � c3V, c3 ⇠ O(1). (26)

Thus, we can suggest that if the condition (26) can be included in the refined de Sitter conjecture, then some
braneworld models [41] with an asymptotic dS spacetime at the future infinity might be included. Similarly, one
can see for example, an interesting embedding of the generalized models of the Randall-Sundrum [42, 43] braneworld
scenarios within string theory has been discussed in [44].

a0 ' 2⇡ac (27)

FMilgrom = ma =

(
maN , a � ac

m
p
aNac, a ⌧ ac

(28)
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There’re two points of view, or say in duality:

1) In higher dimensional viewpoint, there’s only baryonic matters on the brane, and the dark energy and dark
matter are only relevant to the extrinsic curvature.

Except the constrans equations, we also have the dynamical equation

R(d)
µ⌫ = (Kgµ� �Kµ�)K�

⌫ +Mµ⌫ , (53)

Mµ⌫ ⌘ g M
µ g N

⌫ R(d+1)

MN � g M
µ NP g N

⌫ NQR(d+1)

MPNQ.

R(d) = (K2 �Kµ⌫Kµ⌫) +R� 2R(d+1)

MN NMNN , (54)

R = � 2d

d� 2
(T + T ) . (55)

Although R(d+1)

MN = 0 in flat spacetime, it is not necessary for R(d+1)

MPNQ, which depends on the coordinate choices. In
prinpicle we can also define the induced stress tensor from

Rµ⌫ � 1

2
Rgµ⌫ = T M

µ⌫ + TB
µ⌫ , (56)

T M
µ⌫ ⌘ (Kgµ� �Kµ�)K�

⌫ +Mµ⌫ � 1

2

�
K2 �K⇢�K⇢�

�
gµ⌫ ,

Mµ⌫ ⌘ g M
µ g N

⌫ R(d+1)

MN � g M
µ NP g N

⌫ NQR(d+1)

MPNQ.

which is more nature to describe the evolution of the hyper surface, and indeed in the De-sitter spacetime, Kµ� = 1

Lgµ⌫
lead to T M

µ⌫ = �⇤gµ⌫ . However, if we consider the perturbations, it is not easy to guarantee the conservation of this

stress tensor @µT M
µ⌫

?

= 0. While instead the Brown-York one ha That’s why we didn’t use this formula in this work.
We have tried the perturbation based on this formula, we didn’t obtained expected constraint of the dark matters.
But it still a candidate for further interesting of study.

2) On the induced metric of the brane, there’re e↵ective contribution from the holographic stress tensor, which
can be identified as the stress tensor of dark energy and dark matter. Let’s start with the Einstein-Hilbert action in
(d+1) dimension,

Sd+1

=
1

2d+1

Z
dd+1x

p
�g̃(Rd+1

) +

Z
ddx

p
�gKd (57)

With g̃MN the metric in d+ 1 dimension. After the variation, we have

�Sd+1

=
h
R(d+1)

MN � 1

2
R(d+1)g̃MN

i
�g̃MN

+ (Kµ⌫ �Kgµ⌫) �g
µ⌫ (58)

In modified entropic gravity, gravitational field equation is

f

✓
Rµ⌫ � 1

2
gµ⌫R

◆
�

✓
rµr⌫f � 1

2
gµ⌫r2f

◆
= 8⇡GTµ⌫ , (59)

(rµf)Gµ⌫ =rµTµ⌫ , (60)

0 =rµTµ⌫ +rµT D
µ⌫ , (61)

To study the gravitational waves in this modified theory, let us first look at the freely propagating degrees of freedom
of the gravitational field. We first set all the matter source to zero Tµ⌫ = 0. We will tend to the production of the
waves later.

fRµ⌫ �rµr⌫f = 8⇡G

✓
Tµ⌫ � 1

2
gµ⌫T

◆
, (62)
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I. INTRODUCTION

The origin of the dark matter and the dark energy is one of the most important issues in current high energy
physics and cosmology. From observations, only 5% of the components of the current universe is visible to us. At
di↵erent scales, ranging from the galactic scale to the cosmic microwave background (CMB), there are many observed
phenomena to test for various models of dark matter and dark energy [1]. The cold dark matter model which treats
the dark matter as collisionless particles is successful at CMB and larger scales, but at the galactic scale, some
discrepancies were proposed [2]. Moreover, the particle dark matter remains elusive from the direct detection so far
[3]. One of the alternatives to the cold dark matter is the modified Newtonian dynamics or modified gravity [1, 2],
which focus on the small scale crisis that cold dark matter cannot explain. Although those modified gravity theories
seem to be less successful in producing the universe evolution picture agreed with CMB and large scale structure data,
they can explain multiple features in galaxy rotational curves such as Tully-Fisher relation [4], Renzo’s Rule [5], etc.

Recently, E. Verlinde proposed emergent modified gravity from volume contribution of entanglement entropy in
the de Sitter spacetime [6], which leads to the apparent dark matter. It is also related to the idea that Einstein
gravity can be emergent from the entropy force with area law [7]. Although the Verlinde’s derivation in [6] received
some doubts on the consistency in the literature [8], we find several Verlinde’s key ideas rather inspiring. One is the
possibility that our macroscopic notions of spacetime and gravity emerge from an underlying microscopic description,
encouraged by the recent development of entangled entropy and quantum information. Another one is viewing dark
matter as merely a gravitational response of the normal matter on the spacetime, so as to derive the dark matter
distribution around the galaxy, the Tully-Fisher relation.

In this paper, we propose a new viewpoint beyond Verlinde’s emergent gravity, which can be considered as a (3+1)
dimensional holographic screen embedded into a higher dimensional flat spacetime. We identify the holographic stress
energy tensor as that of the total dark components. We firstly construct a toy model, which provides a constraint
relation between the densities of dark matter, dark energy and baryonic matter, in the case considering the Lambda
cold dark matter (⇤CDM) parameterization. Furthermore, we generalize our toy model to the holographic Friedmann-
Robertson-Walker (FRW) universe in a flat bulk, and propose a new parameterization from the holographic model,
where the e↵ective dark matter and dark energy are emergent, and are identified with the Brown-York stress energy
tensor [9]. We also compare our approach to the Dvali-Gabadadze-Porrati(DGP) brane world model [10].

To produce the galaxy rotational curves, we further sketch a holographic elastic model with a de Sitter boundary
and fix an inconsistency in the Verlinde’s paper proposed in [8]. We recover the Tully-Fisher relation from the first law
of thermodynamics and elasticity of the “de Sitter medium”. The elasticity can also be realized in black fold approach
[11] or holographic models [12]. Notice here that we adopt the novel idea of elasticity of dark matter in the Verlinde’s
paper. Because the elasticity seems to capture the nature that the apparent dark matter is only the response of the
presence of the normal matters. In the end, we also comment on the relation of the current construction in this paper
with di↵erent scenarios such as brane world model and holographic models of the universe.

In section II, we first introduce the toy model, which leads to the relation between dark matter component and
baryonic matter component of the current universe. In section III, we generalize our toy model to the holographic
FRW universe, and compare it with the DGP brane world scenario. In section IV, we reproduce the Tully-Fisher
relation, with the help of holographic elasticity model and Verlinde’s assumptions. We briefly compare and discuss
the connection between our toy model and other scenarios, such as brane world models, holographic gravity, emergent
gravity and summarize our results in Section V.

II. A TOY CONSTRAINT FOR THE LATE TIME DARK UNIVERSE

We consider a 3+1 dimensional time-like hypersurface with intrinsic metric gµ⌫ and extrinsic curvature Kµ⌫ , which
is embedded as the boundary of a 4+1 dimensional flat bulk spacetime with finite volume. After adding the localized
stress energy tensor Tµ⌫ on the hypersurface, we assume that the induced Einstein field equations on the boundary
are modified as

Rµ⌫ � 1

2
Rgµ⌫ � 1

L
(Kµ⌫ �Kgµ⌫) = 

4

Tµ⌫ . (1)

The length scale L is related to the positive cosmological constant ⇤ = 3/L2. The Einstein constant 
4

= 8⇡G/c4,
G is the Newton gravitational constant and c is the speed of light. Equivalently, we can rewrite the above modified
Einstein field equations in (1) as

Rµ⌫ � 1

2
Rgµ⌫ = 

4

Tµ⌫ + 
4

hT iµ⌫ , (2)
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3

hT iµ⌫ ⌘ 1


4

L
(Kµ⌫ �Kgµ⌫) . (3)

They are expected to govern the late evolution of our universe. hT iµ⌫ will turn out to be the Brown-York stress energy
tensor [9] induced from higher dimensional space time.We will see L is related to the higher dimensional coupling
constant 

5

through L = 
5

/
4

. At the cosmological scale, we assume that Tµ⌫ only includes the stress energy tensor
of normal matter. While hT iµ⌫ in (3) represents the total dark components in our universe, such as the dark energy
and dark matter.

We are going to consider the parameterization in ⇤CDM model describing the evolution of the late universe, in
which the universe contains a positive cosmological constant ⇤ contribution to the dark energy with component ⌦

⇤

,
cold dark matter density parameter ⌦D, and baryon density parameter ⌦B . They satisfy ⌦D + ⌦B + ⌦

⇤

' 1 in
late universe since the radiation density parameter ⌦B ⇠ 10�4 is very small. Based on the modified Einstein field
equations (1) and constraint from the consistent embedding in higher dimensional flat bulk, we are going to show an
interesting constraint relation between these parameters,

CSZ: ⌦2

D =
1

2
⌦

⇤

(⌦D � ⌦B). (4)

Let us compare with the constraint relation in the Verlinde’s emergent gravity [6],

Verlinde: ⌦2

D =
4

3
⌦B . (5)

We take the parameters from the observation of the ⇤CDM model [13], with a bit priori choice of the parameters as

⌦
⇤

' 0.685, ⌦D ' 0.265, ⌦B ' 0.050. (6)

Comparing our formula (4) with Verlinde’s (5), we obtain

�CSZ ⌘ ⌦2

D � 1

2
⌦

⇤

(⌦D � ⌦B) ' �0.34% , (7)

�V ⌘ ⌦2

D � 4

3
⌦B ' 0.36% . (8)

We can see that our relation holds as well as the Verlinde’s with some di↵erence in approximation. We will show
exactly how to derive this equation (4) in the following.

A. Constraints From Hypersurface Embedding

Similar to the formula (2), let us write down the Einstein equation in d dimensional spacetime as

Rµ⌫ � 1

2
Rgµ⌫ = d [Tµ⌫ + hT iµ⌫ ] , (9)

with µ, ⌫ = 0, 1, ..., (d � 1), and d = 8⇡Gd/c
4. Tµ⌫ is the stress energy tensor of normal matters, and hT iµ⌫ is the

e↵ective dark components of our universe, which can include both of the dark energy and dark matter. The trace of
above equations yields the Ricci scalar

R = � 2d

d� 2
[T + hT i] . (10)

Now we assume that the geometry with metric gµ⌫ can be embedded into one higher dimensional spacetime, as a
hypersurface with the normal vector NA, and the indices A,B = 0, 1, ..., d. We can define the induced metric on the
hypersurface gAB = g̃AB �NANB as well as the extrinsic curvature Kµ⌫ ⌘ g A

µ g B
⌫ r̃

(ANB)

, with µ, ⌫ are the indices

on the hypersurface, which depend on the coordinate choices. r̃ is the covariant derivative associated with the bulk
metric g̃AB . Even though there are matters in the late universe, we require them to be localized on the hypersurface,

such that we still have G(d+1)

AB NANB = T (d+1)

AB NANB = 0 . Thus, considering the Gauss equations, the Hamiltonian
constraint equation of the hypersurface leads to

0 = 2G(d+1)

AB NANB ⌘ K2 �Kµ⌫Kµ⌫ �R. (11)

!9

L =
5
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0, 1, ..., d. We can define the induced metric on the hypersurface gAB = g̃AB � NANB

as well as the extrinsic curvature Kµ⌫ ⌘ g A
µ g B

⌫ r̃(ANB), with µ, ⌫ are the indices on the

hypersurface, which depend on the coordinate choices. r̃ is the covariant derivative associated

with the bulk metric g̃AB. Even though there exists matter in the late time universe, we

require them to be localized on the hypersurface, such that we still have G(d+1)
AB NANB =

T (d+1)
AB NANB = 0 . Thus, considering the Gauss equations, the Hamiltonian constraint

equation of the hypersurface leads to

0 = 2G(5)
ABNANB ⌘ K2 �Kµ⌫Kµ⌫ �R. (2.16)

On the other hand, the momentum constraint equations G(d+1)
AB NAgN ⌫ = T (d+1)

AB NAgN ⌫ = 0

lead to

0 = G(d+1)
AB NAgN ⌫ = rµ (Kµ

⌫ �Kgµ⌫) = 0. (2.17)

r is the covariant derivative associated with the metric gµ⌫ on the hypersurface.

Next we assume that the stress-energy tensor of the dark components in (2.14) can be

given by the Brown-York stress-energy tensor associated with the hypersurface [11],

hT iµ⌫ =
1

d+1
(Kµ⌫ �Kgµ⌫) , (2.18)

and d+1 is the Einstein’s constant in d+1 dimensions. Replacing the extrinsic curvature by

the Brown-York stress-energy tensor, the Hamiltonian constraint relation (2.16) becomes

hT i2
d� 1

� hT iµ⌫hT iµ⌫ =
R

(d+1)2
. (2.19)

Then by plugging (2.15) into (2.19), we have

hT i2
d� 1

� hT iµ⌫hT iµ⌫ = � d
(d+1)2

2

d� 2
(T + hT i) . (2.20)

While the momentum constraint equations (2.17) lead to rµhT iµ⌫ = 0.

2.2 Holographic de-Sitter Screen in a Flat Bulk

Firstly we set that the stress-energy tensor of the baryonic matter and radiation in the Einstein

field equations (2.14) vanish, Tµ⌫=0. As a warm up, let us consider the hypersurface as the

d dimensional de Sitter spacetime,

ds2d = gµ⌫dx
µdx⌫ = �c2dt2 + e2(ct/L)

⇥
dr2 + r2d⌦d�2

⇤
, (2.21)

which can be embedded into the d+ 1 dimensional flat spacetime

ds2d+1 = ⌘ABdx
AdxB = �dX2

0 + dX2
i , (2.22)
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with i = 1, 2, ..., d. The vacuum Einstein field equations associated with the (d+1)-dimensional

flat bulk metric (2.22) turn out to be G(d+1)
AB = 0. Let us study the embedding of de Sitter

hypersurface (2.21) in more details. It is a hyperbolic spacetime with radius L,

L2 = �T 2 +X2
i , NA =

1

L
(X0, Xi). (2.23)

where NA is the normal vector of the hypersurface pointing outwards. The cosmological

constant ⇤d = (d�1)(d�2)
2L2 will play the role of the dark energy. Notice that to balance the

Einstein field equations (2.14) with the induced de Sitter metric gµ⌫ in (2.21), one requires

either the cosmological constant or the apparent dark energy term.

Interestingly, for the pure de Sitter spacetime (2.21), after considering normal vector

(2.23) which leads to the extrinsic curvature Kµ⌫ = 1
Lg

µ⌫ , the Brown-York stress-energy

tensor (2.18) turns out to be hT iµ⌫ = hT iµ⌫⇤ = � 1
d+1

d�1
L gµ⌫ . Then we arrive at the stress-

energy tensor of apparent dark energy,

hT i⇤µ⌫ = � ⇤

4
gµ⌫ , when

d+1

d
=

2L

d� 2
. (2.24)

One can see that the Einstein field equations in (2.14) with the de Sitter metric (2.21) are

naturally satisfied

Rµ⌫ � 1

2
Rgµ⌫ = dhT i⇤µ⌫ . (2.25)

From (2.24) we read out the dark energy density formula

⇢̃⇤ =
uµu⌫
c4

hT iµ⌫⇤ =
⇤d

dc2
. (2.26)

After considering (2.20) with T = 0, we have the identity

hT i2⇤
d� 1

� hT i⇤µ⌫hT iµ⌫⇤ = � ⇢̃⇤c
2

d� 1
hT i⇤. (2.27)

Thus, assuming hT iµ⌫ = hT iµ⌫⇤ ⌘ � ⇤
d
gµ⌫ in the constraint equation (2.19), the pure de

Sitter spacetime satisfies the above identity automatically. Notice here that the Brown-York

stress-energy tensor plays the role of dark energy and there is no baryonic matter or dark

matter yet in the set-up.

2.3 Emergent Dark Matter on Holographic Screen

Next, we consider to add a small amount of baryonic matter and radiation in with the uni-

form and isotropic distribution. Considering (2.24)(2.26), our assumption for the constraint

relation (2.20) becomes

hT i2
d� 1

� hT iµ⌫hT iµ⌫ = � ⇢̃⇤c
2

d� 1

⇥
T + hT i⇤. (2.28)
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H(t)2

H2

0

' ⌦B

a(t)3
+ ⌦1/2

⇤


H(t)2

H2

0

+
⌦I

a(t)4

�
1/2

(63)

H2

H2

0

' ⌦B

a3
+

s
⌦

⇤

⇣H2

H2

0

+
⌦I

a4

⌘
(64)

S
Cuto↵

= S
CFT

� S
AdS

|1rc (65)

(66)

S
Rindler

= S
CFT

� S
AdS

|1r0+✏ (67)

(68)

S
AdS

= S
CFT

(69)

Or equivalently we have

H(t)2

H2

0

=
⌦M

a(t)3
+

⌦
⇤

2
+


⌦2

⇤

4
+

⌦
⇤

⌦M

a(t)3
+

⌦
⇤

⌦I

a(t)4

�
1/2

. (70)

Notice here that by setting ⌦M = ⌦B + ⌦D and ⌦I = 0, we can recover the usual Friedmann equation of DGP
model in (52). Now let us compare it with the late time evolution of ⇤CDM model.

H(t)2

H2

0

=
⌦B

a(t)3
+

⌦D

a(t)3
+ ⌦

⇤

. (71)

If only setting ⌦M = ⌦B , and equal the right hand sides of (68) and (69) at a(t
0

) = 1, we arrive at

⌦2

D = ⌦
⇤

⌦I � ⌦
⇤

(⌦D � ⌦B) . (72)

Thus, once taking

⌦I =
3

2
(⌦D � ⌦B) , (73)

we can recover the constraint relation of our toy model in (4). Considering (71) and plugging the ⇤CDM parameter-
ization (69) into the energy density (56) and pressure (57), we have

⇢H ' ⇢c(⌦⇤

+ ⌦D), pH ' �⇢c⌦⇤

. (74)

It is also consistent with the ansatz in our toy model (25). Again in order to make the presentation more clear, we here
neglected the contribution of radiation ⌦R and spacial curvature ⌦K , which can be easily included in the equations
above. Here ⌦I e↵ectively contributes to the emergent dark matter. More detailed studies of this holographic model
with non-zero ⌦I will appear in our future work.

IV. CONNECTION WITH VERLINDE’S APPARENT DARK MATTER

Inspired by the emergent gravity by Verlinde in [6], we have proposed the induced gravity from higher dimensional
flat spacetime which gives rise to the similar mechanism in the above sections. In this section, we are trying to
reconcile the inconsistency in Verlinde’s emergent gravity pointed out by [8]. We present a consistent derivation of
Tully-Fisher relation in the frame of the elastic model and try to resolve some issues in the original Verlinde’s story.
The elastic property can also be realized in the holographic models, for example, the blackfold approach [11], or
including the e↵ective mass terms in the bulk [12].

Thus, in order to embed Verlinde’s emergent gravity with elasticity into a bulk, we sketch the total action as
Sd+1

+ Sd, where

Sd+1

=
1

2d+1

Z
M

dd+1x
p

�g̃ [Rd+1

� 2⇤d+1

+ LM] +
1

d+1

Z
@M

ddx
p�gK, (75)

We have introduced the time dependent notations with tilde, which satisify

⌦⇤ = ⌦̃⇤|t=t0 , ⌦D = ⌦̃D|t=t0 , ⌦B = ⌦̃B|t=t0 . (2.8)

Based on the modified Einstein field equations (2.1) and the Hamiltonian constraint from

the consistent embedding in higher dimensional flat bulk, we are going to show an interesting

constraint relation between these parameters,

CSZ: ⌦2
D =

1

2
⌦⇤(⌦D � ⌦B). (2.9)

Let us compare with the constraint relation in the Verlinde’s emergent gravity [7],

Verlinde: ⌦2
D =

4

3
⌦B. (2.10)

In the current universe both of these two relations (2.9) and (2.10) are remarkably well obeyed.

Taking the observation values within the ⇤CDM model [25, 26], with a bit priori choice of

the parameters as

⌦⇤ ' 0.685, ⌦D ' 0.265, ⌦B ' 0.050, (2.11)

we can calculate the following di↵erences,

�CSZ ⌘ ⌦2
D � 1

2
⌦⇤(⌦D � ⌦B) ' �0.003 , (2.12)

�V ⌘ ⌦2
D � 4

3
⌦B ' 0.004 . (2.13)

Thus, our relation (2.9) holds as well as the Verlinde’s (2.10) with minor di↵erence in approx-

imation. We will show how to derive this constraint equation (2.9) in the following sections.

2.1 Hamiltonian Constraint From Hypersurface Embedding

Similar to the formula (2.2), let us write down the Einstein equation in d dimensional space-

time as

Rµ⌫ � 1

2
Rgµ⌫ = d [Tµ⌫ + hT iµ⌫ ] , (2.14)

with µ, ⌫ = 0, 1, ..., (d � 1), and d = 8⇡Gd/c
4. Tµ⌫ is the stress-energy tensor of baryonic

matter and radiation, and hT iµ⌫ is the e↵ective dark components of our universe, which can

include both of the dark energy and dark matter. The trace of above equations yields the

Ricci scalar

R = � 2d
d� 2

[T + hT i] . (2.15)

Now we assume that the geometry with metric gµ⌫ can be embedded into one higher

dimensional spacetime, as a hypersurface with the normal vector NA, and the indices A,B =

– 4 –
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Figure 1. Left: The reduced Hubble parameters H(z)/H0 in terms of the redshift z in various models.
Right: The evolution of state equations w̃D(z) in terms of the redshift z in various models. ⇤CDM:
The plotting functions are in (3.43) and (3.48), with the parameters in (2.11); sDGP: The plotting
functions are in (3.44) and (3.47), with the fitting parameter ⌦M = 0.21 in [32]; hFRW: The plotting
functions are in (3.45) and (3.48), with a special choice of the parameters ⌦M = ⌦B , ⌦I = 3

2 (⌦D�⌦B),
along with the values in (2.11).

Here including ⌦I in (3.48) turns the value of w̃D(z) from negative to positive in the late

time universe, and thus e↵ectively contributes to the emergent dark matter.

In Figure 1, we plot the reduced Hubble parameters H(z)/H0 and the state equations

w̃D(z) of the emergent dark matter in terms of the redshift z in various models. The Fried-

mann equation of spatial flat ⇤CDM model is in (2.7), with the parameters in (2.11). The

Friedmann equation of sDGP model is in (3.21), with the fitting parameter ⌦M = 0.21 [31].

The Friedmann equation of our hFRW model is in (3.35), with a special choice of the param-

eters ⌦M = ⌦B,⌦I = 3
2(⌦D � ⌦B), along with the values in (2.11). More detailed studies of

this non-zero ⌦I and fitting parameters in the hFRW model will appear in our future work.

4 Towards Holographic de Sitter Brane with Elasticity

In the above section 2, inspired by the emergent gravity by Verlinde in [7], we have proposed

the emergent dark matter on the de-Sitter hypersurface in a flat bulk, which gives rise to

the similar mechanism as in [7]. In section 3, we have generalized the holographic de-Sitter

scenario to the time evolution case with a FRW hypersurface in a flat bulk. However, the above

– 15 –

with i = 1, 2, ..., d. The vacuum Einstein field equations associated with the (d+1)-dimensional

flat bulk metric (2.22) turn out to be G(d+1)
AB = 0. Let us study the embedding of de Sitter

hypersurface (2.21) in more details. It is a hyperbolic spacetime with radius L,

L2 = �T 2 +X2
i , NA =

1

L
(X0, Xi). (2.23)

where NA is the normal vector of the hypersurface pointing outwards. The cosmological

constant ⇤d = (d�1)(d�2)
2L2 will play the role of the dark energy. Notice that to balance the

Einstein field equations (2.14) with the induced de Sitter metric gµ⌫ in (2.21), one requires

either the cosmological constant or the apparent dark energy term.

Interestingly, for the pure de Sitter spacetime (2.21), after considering normal vector

(2.23) which leads to the extrinsic curvature Kµ⌫ = 1
Lg

µ⌫ , the Brown-York stress-energy

tensor (2.18) turns out to be hT iµ⌫ = hT iµ⌫⇤ = � 1
d+1

d�1
L gµ⌫ . Then we arrive at the stress-

energy tensor of apparent dark energy,

hT i⇤µ⌫ = � ⇤

4
gµ⌫ , when

d+1

d
=

2L

d� 2
. (2.24)

One can see that the Einstein field equations in (2.14) with the de Sitter metric (2.21) are

naturally satisfied

Rµ⌫ � 1

2
Rgµ⌫ = dhT i⇤µ⌫ . (2.25)

From (2.24) we read out the dark energy density formula

⇢̃⇤ =
uµu⌫
c4

hT iµ⌫⇤ =
⇤d

dc2
. (2.26)

After considering (2.20) with T = 0, we have the identity

hT i2⇤
3

� hT i⇤µ⌫hT iµ⌫⇤ = � ⇢̃⇤c
2

3
hT i⇤. (2.27)

Thus, assuming hT iµ⌫ = hT iµ⌫⇤ ⌘ � ⇤
d
gµ⌫ in the constraint equation (2.19), the pure de

Sitter spacetime satisfies the above identity automatically. Notice here that the Brown-York

stress-energy tensor plays the role of dark energy and there is no baryonic matter or dark

matter yet in the set-up.

2.3 Emergent Dark Matter on Holographic Screen

Next, we consider to add a small amount of baryonic matter and radiation in with the uni-

form and isotropic distribution. Considering (2.24)(2.26), our assumption for the constraint

relation (2.20) becomes

hT i2
3

� hT iµ⌫hT iµ⌫ = � ⇢̃⇤c
2

3

⇥
T + hT i⇤. (2.28)
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This is the main constraint relation in this section. Since in Einstein field equations (2.14),

Tµ⌫ is the stress-energy tensors of baryonic matter and radiation,

Tµ⌫ = Tµ⌫
B + Tµ⌫

R , Tµ⌫
B = (⇢B)u

µu⌫ , Tµ⌫
R = (⇢R)u

µu⌫ + pRh
µ⌫ , (2.29)

where ⇢B is the mass density baryonic matter, hµ⌫ = gµ⌫ + uµu⌫ and uµ is the velocity in d

dimensions. The dark energy and dark matter are all assumed to be related to the extrinsic

curvature of the hypersurface embedded in the higher dimensional flat bulk. We take the

Brown-York stress-energy tensor hT iµ⌫ , which is playing the role of dark energy and dark

matter,

hT iµ⌫ = hT iµ⌫⇤ + hT iµ⌫D , hT iµ⌫⇤ = �(⇢⇤c
2)gµ⌫ , hT iµ⌫D = (⇢D)u

µu⌫ + pDh
µ⌫ . (2.30)

Putting them back into the constraint equation (2.28), we have

(⇢⇤ + ⇢D)
h
d⇢⇤ � (d� 2)⇢D � 2(d� 1)

pD
c2

i
= ⇢̃⇤

n
d⇢⇤ + ⇢B +

h
⇢D � (d� 1)

pD
c2

i
+
h
⇢R � (d� 1)

pR
c2

io
. (2.31)

If setting ⇢̃⇤ = ⇢⇤ and with equation (2.27), we arrive at

⇢2D =
⇢⇤

d� 2

h
⇢D � ⇢B � ⇢R + (d� 1)

pR
c2

i
� d� 1

d� 2

pD
c2

(2⇢D + ⇢⇤) . (2.32)

When d = 4, the stress-energy tensor of radiation is traceless �⇢Rc
2 +3pR = 0. Keeping

the pressure pD of the dark matter in the constraint relation (2.32) leads to

⇢2D =
⇢⇤

2(1 + 3w̃D)

⇥
⇢D(1� 3w̃D)� ⇢B

⇤
, w̃D ⌘ pD

⇢Dc2
. (2.33)

w̃D denotes the e↵ective state equation of the emergent dark matter, which can be time

dependent in general. Dividing both sides of (2.33) by the squire of the critical energy

density ⇢2c in (2.6), we obtain the generalized constraint relation

⌦̃2
D =

⌦̃⇤

2(1 + 3w̃D)

⇥
⌦̃D(1� 3w̃D)� ⌦̃B

⇤
. (2.34)

The components have been identified as

⌦̃⇤ ⌘ ⇢⇤/⇢c, ⌦̃D ⌘ ⇢D/⇢c, ⌦̃B ⌘ ⇢B/⇢c, (2.35)

which can be time dependent in general case.

We will take the assumption that the evolution of the late time universe is governed by

the ⇤CDM parameterization, and the total dark components are identified as the Brown-

York stress-energy tensor in (2.3). We also assume the emergent dark matter is pressureless

at t = t0 for now and discuss the otherwise later in this paper. Through setting w̃D = 0 in

(2.34), and considering (2.8), we can obtain our main toy constraint in (2.9),

⌦2
D =

1

2
⌦⇤(⌦D � ⌦B). (2.36)
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Putting them back into the constraint equation (2.28), we have

(⇢⇤ + ⇢D)
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d⇢⇤ � (d� 2)⇢D � 2(d� 1)

pD
c2

i
= ⇢̃⇤

n
d⇢⇤ + ⇢B +

h
⇢D � (d� 1)

pD
c2

i
+
h
⇢R � (d� 1)

pR
c2

io
. (2.31)

If setting ⇢̃⇤ = ⇢⇤ and with equation (2.27), we arrive at
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h
⇢D � ⇢B � ⇢R + (d� 1)

pR
c2

i
� d� 1

d� 2

pD
c2

(2⇢D + ⇢⇤) . (2.32)

When d = 4, the stress-energy tensor of radiation is traceless �⇢Rc
2 +3pR = 0. Keeping

the pressure pD of the dark matter in the constraint relation (2.32) leads to

⇢2D =
⇢⇤

2(1 + 3w̃D)

⇥
⇢D(1� 3w̃D)� ⇢B

⇤
, w̃D ⌘ pD

⇢Dc2
. (2.33)

w̃D denotes the e↵ective state equation of the emergent dark matter, which can be time

dependent in general. Dividing both sides of (2.33) by the squire of the critical energy

density ⇢2c in (2.6), we obtain the generalized constraint relation

⌦̃2
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⇥
⌦̃D(1� 3w̃D)� ⌦̃B

⇤
. (2.34)
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⇤
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2 +3pR = 0. Keeping

the pressure pD of the dark matter in the constraint relation (2.32) leads to

⇢2D =
⇢⇤

2(1 + 3w̃D)

⇥
⇢D(1� 3w̃D)� ⇢B

⇤
, w̃D ⌘ pD

⇢Dc2
. (2.33)
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hypersurface, we assume that the induced Einstein field equations on the hypersurface are

modified as

Rµ⌫ � 1

2
Rgµ⌫ � 1

L
(Kµ⌫ �Kgµ⌫) = 4Tµ⌫ . (2.1)

The length scale L is related to the positive cosmological constant ⇤ = 3/L2. The Einstein

constant 4 = 8⇡G/c4, G is the Newton gravitational constant and c is the speed of light.

Equivalently, we can rewrite the above modified Einstein field equations in (2.1) as

Rµ⌫ � 1

2
Rgµ⌫ = 4Tµ⌫ + 4hT iµ⌫ , (2.2)

hT iµ⌫ ⌘ 1

4L
(Kµ⌫ �Kgµ⌫) . (2.3)

They are expected to govern the late time evolution of our universe. hT iµ⌫ will turn out to

be the Brown-York stress-energy tensor [11] induced from higher dimensional space time. We

will see L is related to the higher dimensional coupling constant 5 through L = 5/4. At

the cosmological scale, we assume that Tµ⌫ only includes the stress-energy tensor of baryonic

matter and radiation. While hT iµ⌫ in (2.3) represents the total dark components in our

universe, such as the dark energy and dark matter.

We are going to consider the parameterization in ⇤CDM model describing the evolution

of the late time universe. In detail, we take the FRW metric in 3 + 1 dimensions, which

assumes that our universe is uniform and isotropic at large scale, with scale factor a(t),

ds24 = gµ⌫dx
µdx⌫ = �c2dt2 + a(t)2


dr2

1� kr2
+ r2d⌦2

�
. (2.4)

In the spatial flat ⇤CDM model with k = 0, it contains a positive cosmological constant ⇤,

which contributes to the dark energy with density parameter ⌦⇤, cold dark matter density

parameter ⌦D, and baryon density parameter ⌦B. The Friedmann equation is given by

H(t)2

H2
0

= ⌦⇤ +
⌦D

a(t)3
+

⌦B

a(t)3
+

⌦R

a(t)4
. (2.5)

H(t) is the Hubble parameter and H0 ⌘ H(t0) is the Hubble constant today at t = t0.

H(t) ⌘ ȧ(t)

a(t)
, H2

0 =
4c

4

3
⇢c ) ⇢c =

3

4

H2
0

c4
. (2.6)

ȧ(t) is the derivative with respect to the time t and ⇢c is the critical energy density of the

universe. If requiring a(t0) = 1, from (2.5) we have 1 = ⌦⇤ + ⌦B + ⌦D + ⌦R. Since the

radiation density parameter ⌦R ⇠ 10�4 is very small, in the late time universe we will simply

take ⌦D+⌦B+⌦⇤ ' 1. After neglecting the radiation component ⌦R in (2.5), the Friedmann

equation of the late time spatial flat ⇤CDM universe can be written as

H(t)2

H2
0

= ⌦⇤ +
⌦D

a(t)3
+

⌦B

a(t)3
⌘ ⌦̃⇤ + ⌦̃D + ⌦̃B. (2.7)
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We study a holographic model of the late time universe which on the hypersurface in a flat bulk
spacetime. Both of the dark energy and the dark matter are assumed to emerge from the holographic
stress-energy tensor. We fit the modified Friedmann equation with the supernova data, the the result
match very well with our theoretical assumptions. Instead of ⌦M = 0.30 in the ⇤CDM model, only
⌦M = 0.04 is required in our model, which could be indentified as the baryonic matter. While the
e↵ects of dark matter could be identified into the holographic stress-energy tensor. We also check
swampland criterion of this holographic model.

I. Introduction

In this article, we consider a more consistent embed-
ding of the FRW metric into one higher dimensional flat
spacetime [6]. We assume that the stress-energy tensor
of the total dark components, including dark matter and
dark energy, is provided by the holographic stress-energy
tensor on the FRW hypersurface. In this work, we firstly
review the consistent embedding of the FRW hypersur-
face in a flat bulk. Then we assume that the holographic
stress tensor play the role as the dark matter and dark
energy in the late time universe. We fit the modified
Friedmann equation with the supernova and BAO data,
which match very well with the theoretical assumptions
of the parameters.

II. FRW Hypersurface in a Flat Bulk

Consider a 4 + 1 dimensional flat bulk M with metric
g̃AB , along with the 3+1 dimensional time like hypersur-
face @M with the induced metric gµ⌫ . The total action
is given by

Stot = S5 + S4, (1)

S5 =
1

25

Z

M

d5x
p

�g̃R+
1

5

Z

@M

d4x
p�gK, (2)

S4 =
1

24

Z

@M

d4x
p�g R+

Z

@M

d4x
p�gLm . (3)

K is the trace of extrinsic curvature of the hypersurface
@M, and Lm is the Lagrange density of the standard
model which is localized on the hypersurface.

In this subsection, we will give a new physical interpre-
tation of the FRW hypersurface in a flat bulk with the

embedding metric (7). From the viewpoint of the cuto↵
holography in the flat spacetime [18, 19], we can drop the
manifold M

�

in the flat bulk, such that the hypersurface
@M at y = 0 plays the role of the holographic boundary
of the manifold M+. the Einstein field equation becomes

1

4
Gµ⌫ = Tm

µ⌫ + hT idµ⌫ , (4)

where the Brown-York stress-energy tensor on @M is

hT idµ⌫ = � 2p�g

�(S5)

�gµ⌫
=

1

5
(Kµ⌫ �Kgµ⌫) . (5)

Or, equivalently

Rµ⌫ � 1

2
Rgµ⌫ � 4

5
(Kµ⌫ �Kgµ⌫) = 4T

m
µ⌫ (6)

If choose the Gaussian normal coordinates of the bulk
metric g̃AB , we have

ds25 = g̃ABdx
AdxB = dy2 + g̃µ⌫dx

µdx⌫ . (7)

We assume the hypersurface @M located at y = 0, which
is the shared boundary of the half bulkM+ for the region
y > 0 and the half bulk M

�

for the region y < 0.
We consider that our universe is uniform and isotropic

at large scale, and take the spatially flat FRW metric in
d = 4 dimensions,

ds24 =gµ⌫dx
µdx⌫ = �c2dt2 + a(t)2

⇥
dr2 + r2d⌦2

⇤
. (8)

The consistent embedding in higher dimensional flat
spacetime has been discussed in [7], where the bulk met-
ric (7) in Gaussian normal coordinates is

ds25 = dy2 � n(y, t)2 c2dt2 + a(y, t)2
⇥
dr2 + r2d⌦2

⇤
.
(9)
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We study a holographic model of the late time universe which on the hypersurface in a flat bulk
spacetime. Both of the dark energy and the dark matter are assumed to emerge from the holographic
stress-energy tensor. We fit the modified Friedmann equation with the supernova data, the the result
match very well with our theoretical assumptions. Instead of ⌦M = 0.30 in the ⇤CDM model, only
⌦M = 0.04 is required in our model, which could be indentified as the baryonic matter. While the
e↵ects of dark matter could be identified into the holographic stress-energy tensor. We also check
swampland criterion of this holographic model.

I. Introduction

In this article, we consider a more consistent embed-
ding of the FRW metric into one higher dimensional flat
spacetime [6]. We assume that the stress-energy tensor
of the total dark components, including dark matter and
dark energy, is provided by the holographic stress-energy
tensor on the FRW hypersurface. In this work, we firstly
review the consistent embedding of the FRW hypersur-
face in a flat bulk. Then we assume that the holographic
stress tensor play the role as the dark matter and dark
energy in the late time universe. We fit the modified
Friedmann equation with the supernova and BAO data,
which match very well with the theoretical assumptions
of the parameters.

II. FRW Hypersurface in a Flat Bulk

Consider a 4 + 1 dimensional flat bulk M with metric
g̃AB , along with the 3+1 dimensional time like hypersur-
face @M with the induced metric gµ⌫ . The total action
is given by

Stot = S5 + S4, (1)

S5 =
1

25
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�g̃R+
1

5

Z

@M

d4x
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K is the trace of extrinsic curvature of the hypersurface
@M, and Lm is the Lagrange density of the standard
model which is localized on the hypersurface.

In this subsection, we will give a new physical interpre-
tation of the FRW hypersurface in a flat bulk with the

embedding metric (6). From the viewpoint of the cuto↵
holography in the flat spacetime [18, 19], we can drop the
manifold M

�

in the flat bulk, such that the hypersurface
@M at y = 0 plays the role of the holographic boundary
of the manifold M+. the Einstein field equation becomes

1

4
Gµ⌫ = Tm

µ⌫ + hT idµ⌫ , (4)

where the Brown-York stress-energy tensor on @M is

hT idµ⌫ = � 2p�g

�(S5)

�gµ⌫
=

1

5
(Kµ⌫ �Kgµ⌫) . (5)

If choose the Gaussian normal coordinates of the bulk
metric g̃AB , we have

ds25 = g̃ABdx
AdxB = dy2 + g̃µ⌫dx

µdx⌫ . (6)

We assume the hypersurface @M located at y = 0, which
is the shared boundary of the half bulkM+ for the region
y > 0 and the half bulk M

�

for the region y < 0.
We consider that our universe is uniform and isotropic

at large scale, and take the spatially flat FRW metric in
d = 4 dimensions,

ds24 =gµ⌫dx
µdx⌫ = �c2dt2 + a(t)2

⇥
dr2 + r2d⌦2

⇤
. (7)

The consistent embedding in higher dimensional flat
spacetime has been discussed in [7], where the bulk met-
ric (6) in Gaussian normal coordinates is

ds25 = dy2 � n(y, t)2 c2dt2 + a(y, t)2
⇥
dr2 + r2d⌦2

⇤
.
(8)
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We study a holographic model of the late time universe which on the hypersurface in a flat bulk
spacetime. Both of the dark energy and the dark matter are assumed to emerge from the holographic
stress-energy tensor. We fit the modified Friedmann equation with the supernova data, the the result
match very well with our theoretical assumptions. Instead of ⌦M = 0.30 in the ⇤CDM model, only
⌦M = 0.04 is required in our model, which could be indentified as the baryonic matter. While the
e↵ects of dark matter could be identified into the holographic stress-energy tensor. We also check
swampland criterion of this holographic model.
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of the total dark components, including dark matter and
dark energy, is provided by the holographic stress-energy
tensor on the FRW hypersurface. In this work, we firstly
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face in a flat bulk. Then we assume that the holographic
stress tensor play the role as the dark matter and dark
energy in the late time universe. We fit the modified
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We study a holographic model of the late time universe which on the hypersurface in a flat bulk
spacetime. Both of the dark energy and the dark matter are assumed to emerge from the holographic
stress-energy tensor. We fit the modified Friedmann equation with the supernova data, the the result
match very well with our theoretical assumptions. Instead of ⌦M = 0.30 in the ⇤CDM model, only
⌦M = 0.04 is required in our model, which could be indentified as the baryonic matter. While the
e↵ects of dark matter could be identified into the holographic stress-energy tensor. We also check
swampland criterion of this holographic model.

I. Introduction

In this article, we consider a more consistent embed-
ding of the FRW metric into one higher dimensional flat
spacetime [6]. We assume that the stress-energy tensor
of the total dark components, including dark matter and
dark energy, is provided by the holographic stress-energy
tensor on the FRW hypersurface. In this work, we firstly
review the consistent embedding of the FRW hypersur-
face in a flat bulk. Then we assume that the holographic
stress tensor play the role as the dark matter and dark
energy in the late time universe. We fit the modified
Friedmann equation with the supernova and BAO data,
which match very well with the theoretical assumptions
of the parameters.

II. FRW Hypersurface in a Flat Bulk

Consider a 4 + 1 dimensional flat bulk M with metric
g̃AB , along with the 3+1 dimensional time like hypersur-
face @M with the induced metric gµ⌫ . The total action
is given by

Stot = S5 + S4, (1)

S5 =
1

25

Z

M

d5x
p

�g̃R+
1

5

Z

@M

d4x
p�gK, (2)

S4 =
1

24

Z

@M

d4x
p�g R+

Z

@M

d4x
p�gLm . (3)

K is the trace of extrinsic curvature of the hypersurface
@M, and Lm is the Lagrange density of the standard
model which is localized on the hypersurface.

In this subsection, we will give a new physical interpre-
tation of the FRW hypersurface in a flat bulk with the

embedding metric (7). From the viewpoint of the cuto↵
holography in the flat spacetime [18, 19], we can drop the
manifold M

�

in the flat bulk, such that the hypersurface
@M at y = 0 plays the role of the holographic boundary
of the manifold M+. the Einstein field equation becomes

1

4
Gµ⌫ = Tm

µ⌫ + hT idµ⌫ , (4)

where the Brown-York stress-energy tensor on @M is

hT idµ⌫ = � 2p�g

�(S5)

�gµ⌫
=

1

5
(Kµ⌫ �Kgµ⌫) . (5)

Or, equivalently

Rµ⌫ � 1

2
Rgµ⌫ � 4

5
(Kµ⌫ �Kgµ⌫) = 4T

m
µ⌫ (6)

If choose the Gaussian normal coordinates of the bulk
metric g̃AB , we have

ds25 = g̃ABdx
AdxB = dy2 + g̃µ⌫dx

µdx⌫ . (7)

We assume the hypersurface @M located at y = 0, which
is the shared boundary of the half bulkM+ for the region
y > 0 and the half bulk M

�

for the region y < 0.
We consider that our universe is uniform and isotropic

at large scale, and take the spatially flat FRW metric in
d = 4 dimensions,

ds24 =gµ⌫dx
µdx⌫ = �c2dt2 + a(t)2

⇥
dr2 + r2d⌦2

⇤
. (8)

The consistent embedding in higher dimensional flat
spacetime has been discussed in [7], where the bulk met-
ric (7) in Gaussian normal coordinates is

ds25 = dy2 � n(y, t)2 c2dt2 + a(y, t)2
⇥
dr2 + r2d⌦2

⇤
.
(9)

2 Emergent Dark Universe on a Hypersurface

We consider a 3 + 1 dimensional time like hypersurface H with the induced metric gµ⌫
and Ricci scalar R, which is embedded into a 4 + 1 dimensional bulk spacetime M
with metric g̃AB and Ricci scalar R. After including the Lagrangian density Lm of the
standard model matter on the hypersurface, we can write down the total action

Stot =

Z

H
d4x

p
�g

⇣ 1

24
R + Lm

⌘
+ S5 , (5)

S5 ⌘
Z

M
d5x

p
�g̃

⇣ 1

25
R
⌘
+

Z

H
d4x

p
�g

1

5
K, (6)

where K is the trace of extrinsic curvature of the hypersurface H. The Einstein field
equations on the hypersurface become [6],

1

4
Gµ⌫ = Tm

µ⌫ + hT idµ⌫ , (7)

where the Brown-York stress-energy tensor [7] on H is given by

hT idµ⌫ ⌘ � 2p�g

�(S5)

�gµ⌫
=

1

5
(Kµ⌫ �Kgµ⌫) . (8)

After setting 5 = L4, we can reach the modified Einstein field equations in (1). Notice
that in the cuto↵ holography on fluid/gravity duality, there is no dynamics of the induced
metric on the hypersurface [19–23]. Although the modified Einstein field equations are
related to the Dvali-Gabadadze-Porrati (DGP) braneworld models [24–26], we will give
a physical interpretation from holographic scenario together with new parameters.

Considering that our universe is uniform and isotropic at large scale, we take the
spatially flat FRW metric in 3 + 1 dimensions,

ds24 =gµ⌫dx
µdx⌫ = �c2dt2 + a(t)2

⇥
dr2 + r2d⌦2

⇤
. (9)

The consistent embedding of this FRW metric in 4 + 1 dimensional flat spacetime has
been studied in [27], where the bulk metric in Gaussian normal coordinates is

ds25 = dy2 � n(y, t)2 c2dt2 + a(y, t)2
⇥
dr2 + r2d⌦2

⇤
. (10)

The consistent embedding functions are solved as [28–30],

a(y, t)2 = a(t)2 + y2
ȧ(t)2

c2
± 2y

r
a(t)2

ȧ(t)2

c2
+

I

L2
, (11)

n(y, t) =
@ta(y, t)

ȧ(t)
. (12)

The integration constant I is dimensionless after putting a scale factor L2 in (11). In
the coordinates of this metric (10), the hypersurface H is located at y = 0, which is the

4
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Tm
µ⌫ ⌘ � 2p

�g

�(Sm)

�gµ⌫
,

Yun-Long Zhang  Holographic Dark Fluid

This is the main constraint relation in this section. Since in Einstein field equations (2.14),

Tµ⌫ is the stress-energy tensors of baryonic matter and radiation,

Tµ⌫ = Tµ⌫
B + Tµ⌫

R , Tµ⌫
B = (⇢B)u

µu⌫ , Tµ⌫
R = (⇢R)u

µu⌫ + pRh
µ⌫ , (2.29)

where ⇢B is the mass density baryonic matter, hµ⌫ = gµ⌫ + uµu⌫ and uµ is the velocity in d

dimensions. The dark energy and dark matter are all assumed to be related to the extrinsic

curvature of the hypersurface embedded in the higher dimensional flat bulk. We take the

Brown-York stress-energy tensor hT iµ⌫ , which is playing the role of dark energy and dark

matter,

hT iµ⌫ = hT iµ⌫⇤ + hT iµ⌫D , hT iµ⌫⇤ = �(⇢⇤c
2)gµ⌫ , hT iµ⌫D = (⇢D)u

µu⌫ + pDh
µ⌫ . (2.30)

Putting them back into the constraint equation (2.28), we have

(⇢⇤ + ⇢D)
h
d⇢⇤ � (d� 2)⇢D � 2(d� 1)

pD
c2

i
= ⇢̃⇤

n
d⇢⇤ + ⇢B +

h
⇢D � (d� 1)

pD
c2

i
+

h
⇢R � (d� 1)

pR
c2

io
. (2.31)

If setting ⇢̃⇤ = ⇢⇤ and with equation (2.27), we arrive at

⇢2D =
⇢⇤

d� 2

h
⇢D � ⇢B � ⇢R + (d� 1)

pR
c2

i
� d� 1

d� 2

pD
c2

(2⇢D + ⇢⇤) . (2.32)

When d = 4, the stress-energy tensor of radiation is traceless �⇢Rc
2 +3pR = 0. Keeping

the pressure pD of the dark matter in the constraint relation (2.32) leads to

⇢2D =
⇢⇤

2(1 + 3w̃D)

⇥
⇢D(1� 3w̃D)� ⇢B

⇤
, w̃D ⌘ pD

⇢Dc2
. (2.33)

w̃D denotes the e↵ective state equation of the emergent dark matter, which can be time

dependent in general. Dividing both sides of (2.33) by the squire of the critical energy

density ⇢2c in (2.6), we obtain the generalized constraint relation

⌦̃2
D =

⌦̃⇤

2(1 + 3w̃D)

⇥
⌦̃D(1� 3w̃D)� ⌦̃B

⇤
. (2.34)

The components have been identified as

⌦̃⇤ ⌘ ⇢⇤/⇢c, ⌦̃D ⌘ ⇢D/⇢c, ⌦̃B ⌘ ⇢B/⇢c, (2.35)

which can be time dependent in general case.

We will take the assumption that the evolution of the late time universe is governed by

the ⇤CDM parameterization, and the total dark components are identified as the Brown-

York stress-energy tensor in (2.3). We also assume the emergent dark matter is pressureless

at t = t0 for now and discuss the otherwise later in this paper. Through setting w̃D = 0 in

(2.34), and considering (2.8), we can obtain our main toy constraint in (2.9),

⌦2
D =

1

2
⌦⇤(⌦D � ⌦B). (2.36)
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We study a holographic model of the late time universe which on the hypersurface in a flat bulk
spacetime. Both of the dark energy and the dark matter are assumed to emerge from the holographic
stress-energy tensor. We fit the modified Friedmann equation with the supernova data, the the result
match very well with our theoretical assumptions. Instead of ⌦M = 0.30 in the ⇤CDM model, only
⌦M = 0.04 is required in our model, which could be indentified as the baryonic matter. While the
e↵ects of dark matter could be identified into the holographic stress-energy tensor. We also check
swampland criterion of this holographic model.

I. Introduction

In this article, we consider a more consistent embed-
ding of the FRW metric into one higher dimensional flat
spacetime [6]. We assume that the stress-energy tensor
of the total dark components, including dark matter and
dark energy, is provided by the holographic stress-energy
tensor on the FRW hypersurface. In this work, we firstly
review the consistent embedding of the FRW hypersur-
face in a flat bulk. Then we assume that the holographic
stress tensor play the role as the dark matter and dark
energy in the late time universe. We fit the modified
Friedmann equation with the supernova and BAO data,
which match very well with the theoretical assumptions
of the parameters.

II. FRW Hypersurface in a Flat Bulk

Consider a 4 + 1 dimensional flat bulk M with metric
g̃AB , along with the 3+1 dimensional time like hypersur-
face @M with the induced metric gµ⌫ . The total action
is given by

Stot = S5 + S4, (1)

S5 =
1

25

Z

M

d5x
p

�g̃R+
1

5

Z

@M

d4x
p�gK, (2)

S4 =
1

24

Z

@M

d4x
p�g R+

Z

@M

d4x
p�gLm . (3)

K is the trace of extrinsic curvature of the hypersurface
@M, and Lm is the Lagrange density of the standard
model which is localized on the hypersurface.

In this subsection, we will give a new physical interpre-
tation of the FRW hypersurface in a flat bulk with the

embedding metric (7). From the viewpoint of the cuto↵
holography in the flat spacetime [18, 19], we can drop the
manifold M

�

in the flat bulk, such that the hypersurface
@M at y = 0 plays the role of the holographic boundary
of the manifold M+. the Einstein field equation becomes

1

4
Gµ⌫ = Tm

µ⌫ + hT idµ⌫ , (4)

where the Brown-York stress-energy tensor on @M is

hT idµ⌫ = � 2p�g

�(S5)

�gµ⌫
=

1

5
(Kµ⌫ �Kgµ⌫) . (5)

Or, equivalently

Rµ⌫ � 1

2
Rgµ⌫ � 4

5
(Kµ⌫ �Kgµ⌫) = 4T

m
µ⌫ (6)

If choose the Gaussian normal coordinates of the bulk
metric g̃AB , we have

ds25 = g̃ABdx
AdxB = dy2 + g̃µ⌫dx

µdx⌫ . (7)

We assume the hypersurface @M located at y = 0, which
is the shared boundary of the half bulkM+ for the region
y > 0 and the half bulk M

�

for the region y < 0.
We consider that our universe is uniform and isotropic

at large scale, and take the spatially flat FRW metric in
d = 4 dimensions,

ds24 =gµ⌫dx
µdx⌫ = �c2dt2 + a(t)2

⇥
dr2 + r2d⌦2

⇤
. (8)

The consistent embedding in higher dimensional flat
spacetime has been discussed in [7], where the bulk met-
ric (7) in Gaussian normal coordinates is

ds25 = dy2 � n(y, t)2 c2dt2 + a(y, t)2
⇥
dr2 + r2d⌦2

⇤
.
(9)
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We study a holographic model of the late time universe which on the hypersurface in a flat bulk
spacetime. Both of the dark energy and the dark matter are assumed to emerge from the holographic
stress-energy tensor. We fit the modified Friedmann equation with the supernova data, the the result
match very well with our theoretical assumptions. Instead of ⌦M = 0.30 in the ⇤CDM model, only
⌦M = 0.04 is required in our model, which could be indentified as the baryonic matter. While the
e↵ects of dark matter could be identified into the holographic stress-energy tensor. We also check
swampland criterion of this holographic model.

I. Introduction

In this article, we consider a more consistent embed-
ding of the FRW metric into one higher dimensional flat
spacetime [6]. We assume that the stress-energy tensor
of the total dark components, including dark matter and
dark energy, is provided by the holographic stress-energy
tensor on the FRW hypersurface. In this work, we firstly
review the consistent embedding of the FRW hypersur-
face in a flat bulk. Then we assume that the holographic
stress tensor play the role as the dark matter and dark
energy in the late time universe. We fit the modified
Friedmann equation with the supernova and BAO data,
which match very well with the theoretical assumptions
of the parameters.

II. FRW Hypersurface in a Flat Bulk

Consider a 4 + 1 dimensional flat bulk M with metric
g̃AB , along with the 3+1 dimensional time like hypersur-
face @M with the induced metric gµ⌫ . The total action
is given by

Stot = S5 + S4, (1)

S5 =
1

25

Z

M

d5x
p

�g̃R+
1

5

Z

@M

d4x
p�gK, (2)

S4 =
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24

Z

@M

d4x
p�g R+

Z

@M

d4x
p�gLm . (3)

K is the trace of extrinsic curvature of the hypersurface
@M, and Lm is the Lagrange density of the standard
model which is localized on the hypersurface.

In this subsection, we will give a new physical interpre-
tation of the FRW hypersurface in a flat bulk with the

embedding metric (7). From the viewpoint of the cuto↵
holography in the flat spacetime [18, 19], we can drop the
manifold M

�

in the flat bulk, such that the hypersurface
@M at y = 0 plays the role of the holographic boundary
of the manifold M+. the Einstein field equation becomes

1

4
Gµ⌫ = Tm

µ⌫ + hT idµ⌫ , (4)

where the Brown-York stress-energy tensor on @M is

hT idµ⌫ = � 2p�g

�(S5)

�gµ⌫
=

1

5
(Kµ⌫ �Kgµ⌫) . (5)

Or, equivalently

Rµ⌫ � 1

2
Rgµ⌫ � 4

5
(Kµ⌫ �Kgµ⌫) = 4T

m
µ⌫ (6)

If choose the Gaussian normal coordinates of the bulk
metric g̃AB , we have

ds25 = g̃ABdx
AdxB = dy2 + g̃µ⌫dx

µdx⌫ . (7)

We assume the hypersurface @M located at y = 0, which
is the shared boundary of the half bulkM+ for the region
y > 0 and the half bulk M

�

for the region y < 0.
We consider that our universe is uniform and isotropic

at large scale, and take the spatially flat FRW metric in
d = 4 dimensions,

ds24 =gµ⌫dx
µdx⌫ = �c2dt2 + a(t)2

⇥
dr2 + r2d⌦2

⇤
. (8)

The consistent embedding in higher dimensional flat
spacetime has been discussed in [7], where the bulk met-
ric (7) in Gaussian normal coordinates is

ds25 = dy2 � n(y, t)2 c2dt2 + a(y, t)2
⇥
dr2 + r2d⌦2

⇤
.
(9)
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We study a holographic model of the late time universe which on the hypersurface in a flat bulk
spacetime. Both of the dark energy and the dark matter are assumed to emerge from the holographic
stress-energy tensor. We fit the modified Friedmann equation with the supernova data, the the result
match very well with our theoretical assumptions. Instead of ⌦M = 0.30 in the ⇤CDM model, only
⌦M = 0.04 is required in our model, which could be indentified as the baryonic matter. While the
e↵ects of dark matter could be identified into the holographic stress-energy tensor. We also check
swampland criterion of this holographic model.

I. Introduction

In this article, we consider a more consistent embed-
ding of the FRW metric into one higher dimensional flat
spacetime [6]. We assume that the stress-energy tensor
of the total dark components, including dark matter and
dark energy, is provided by the holographic stress-energy
tensor on the FRW hypersurface. In this work, we firstly
review the consistent embedding of the FRW hypersur-
face in a flat bulk. Then we assume that the holographic
stress tensor play the role as the dark matter and dark
energy in the late time universe. We fit the modified
Friedmann equation with the supernova and BAO data,
which match very well with the theoretical assumptions
of the parameters.

II. FRW Hypersurface in a Flat Bulk

Consider a 4 + 1 dimensional flat bulk M with metric
g̃AB , along with the 3+1 dimensional time like hypersur-
face @M with the induced metric gµ⌫ . The total action
is given by

Stot = S5 + S4, (1)

S5 =
1

25
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�g̃R+
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p�gLm . (3)

K is the trace of extrinsic curvature of the hypersurface
@M, and Lm is the Lagrange density of the standard
model which is localized on the hypersurface.

In this subsection, we will give a new physical interpre-
tation of the FRW hypersurface in a flat bulk with the

embedding metric (7). From the viewpoint of the cuto↵
holography in the flat spacetime [18, 19], we can drop the
manifold M

�

in the flat bulk, such that the hypersurface
@M at y = 0 plays the role of the holographic boundary
of the manifold M+. the Einstein field equation becomes

1

4
Gµ⌫ = Tm

µ⌫ + hT idµ⌫ , (4)

where the Brown-York stress-energy tensor on @M is

hT idµ⌫ = � 2p�g

�(S5)

�gµ⌫
=

1

5
(Kµ⌫ �Kgµ⌫) . (5)

Or, equivalently

Rµ⌫ � 1

2
Rgµ⌫ � 4

5
(Kµ⌫ �Kgµ⌫) = 4T

m
µ⌫ (6)

If choose the Gaussian normal coordinates of the bulk
metric g̃AB , we have

ds25 = g̃ABdx
AdxB = dy2 + g̃µ⌫dx

µdx⌫ . (7)

We assume the hypersurface @M located at y = 0, which
is the shared boundary of the half bulkM+ for the region
y > 0 and the half bulk M

�

for the region y < 0.
We consider that our universe is uniform and isotropic

at large scale, and take the spatially flat FRW metric in
d = 4 dimensions,

ds24 =gµ⌫dx
µdx⌫ = �c2dt2 + a(t)2

⇥
dr2 + r2d⌦2

⇤
. (8)

The consistent embedding in higher dimensional flat
spacetime has been discussed in [7], where the bulk met-
ric (7) in Gaussian normal coordinates is

ds25 = dy2 � n(y, t)2 c2dt2 + a(y, t)2
⇥
dr2 + r2d⌦2

⇤
.
(9)

2

The consistent embedding functions are solved as [8–10],

a(y, t)2 = a(t)2 + y2
ȧ(t)2

c2
± 2y

r
a(t)2

ȧ(t)2

c2
+ I, (10)

n(y, t) =
@ta(y, t)

ȧ(t)
. (11)

The dimension of integration constant I is [L]�2.

III. Holographic Scenario for the Dark Universe

In the previous subsection, we have studied the dy-
namics of a FRW hypersurface, which is embedded into
the higher dimensional flat spacetime.

The energy density and pressure in hT idµ⌫ are given by
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And the energy conservation equation remains
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Putting (12) into (14), the modified Friedmann equa-
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We named this scenario as the holographic FRW(hFRW)
model. Notice here that by setting ⌦m = ⌦b + ⌦c and
⌦I = 0, we can recover the usual Friedmann equation of
the sDGP model. While if setting ⌦m = ⌦b and turning
the parameter ⌦I , it can be shown that one is able to
recover our toy constraint relation in [2].

Finally, we summarize the normalized Hubble param-
eters H(z)/H0 in terms of the redshift z in various mod-
els. The redshift z is related to the scale factor via
a(t)/a(t0) = 1/(1 + z).
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IV. Data Fitting with SN and BAO

1. Super Nova Data

by Gansukh and Sunly

FIG. 1: The fitting with Super Nova Data gives ⌦m ' 0.04
and ⌦I ' 0.39, where ↵ = 0.14,� = 3.1 has be chosen.

FIG. 2: The fitting result of the reduced Hubble parameter
h = H0/100 km s�1 Mpc�1 ' 0.71 .
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We study a holographic model of the late time universe which on the hypersurface in a flat bulk
spacetime. Both of the dark energy and the dark matter are assumed to emerge from the holographic
stress-energy tensor. We fit the modified Friedmann equation with the supernova data, the the result
match very well with our theoretical assumptions. Instead of ⌦M = 0.30 in the ⇤CDM model, only
⌦M = 0.04 is required in our model, which could be indentified as the baryonic matter. While the
e↵ects of dark matter could be identified into the holographic stress-energy tensor. We also check
swampland criterion of this holographic model.

I. Introduction

In this article, we consider a more consistent embed-
ding of the FRW metric into one higher dimensional flat
spacetime [6]. We assume that the stress-energy tensor
of the total dark components, including dark matter and
dark energy, is provided by the holographic stress-energy
tensor on the FRW hypersurface. In this work, we firstly
review the consistent embedding of the FRW hypersur-
face in a flat bulk. Then we assume that the holographic
stress tensor play the role as the dark matter and dark
energy in the late time universe. We fit the modified
Friedmann equation with the supernova and BAO data,
which match very well with the theoretical assumptions
of the parameters.

II. FRW Hypersurface in a Flat Bulk

Consider a 4 + 1 dimensional flat bulk M with metric
g̃AB , along with the 3+1 dimensional time like hypersur-
face @M with the induced metric gµ⌫ . The total action
is given by

Stot = S5 + S4, (1)

S5 =
1

25

Z

M

d5x
p

�g̃R+
1

5

Z

@M

d4x
p�gK, (2)

S4 =
1

24

Z

@M

d4x
p�g R+

Z

@M

d4x
p�gLm . (3)

K is the trace of extrinsic curvature of the hypersurface
@M, and Lm is the Lagrange density of the standard
model which is localized on the hypersurface.

In this subsection, we will give a new physical interpre-
tation of the FRW hypersurface in a flat bulk with the

embedding metric (7). From the viewpoint of the cuto↵
holography in the flat spacetime [18, 19], we can drop the
manifold M

�

in the flat bulk, such that the hypersurface
@M at y = 0 plays the role of the holographic boundary
of the manifold M+. the Einstein field equation becomes

1

4
Gµ⌫ = Tm

µ⌫ + hT idµ⌫ , (4)

where the Brown-York stress-energy tensor on @M is

hT idµ⌫ = � 2p�g

�(S5)

�gµ⌫
=

1

5
(Kµ⌫ �Kgµ⌫) . (5)

Or, equivalently

Rµ⌫ � 1

2
Rgµ⌫ � 4

5
(Kµ⌫ �Kgµ⌫) = 4T

m
µ⌫ (6)

If choose the Gaussian normal coordinates of the bulk
metric g̃AB , we have

ds25 = g̃ABdx
AdxB = dy2 + g̃µ⌫dx

µdx⌫ . (7)

We assume the hypersurface @M located at y = 0, which
is the shared boundary of the half bulkM+ for the region
y > 0 and the half bulk M

�

for the region y < 0.
We consider that our universe is uniform and isotropic

at large scale, and take the spatially flat FRW metric in
d = 4 dimensions,

ds24 =gµ⌫dx
µdx⌫ = �c2dt2 + a(t)2

⇥
dr2 + r2d⌦2

⇤
. (8)

The consistent embedding in higher dimensional flat
spacetime has been discussed in [7], where the bulk met-
ric (7) in Gaussian normal coordinates is

ds25 = dy2 � n(y, t)2 c2dt2 + a(y, t)2
⇥
dr2 + r2d⌦2

⇤
.
(9)
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Figure 1: The 68.3%, 95.4%, and 99.7% confidence contours for various parameter com-
binations. ⌦m, ⌦I , h = H0/(100 km s�1 Mpc�1) and 1D marginalized likelihood for h.
The best fit values are at ⌦m = 0.0299, ⌦I = 0.4382 and h = 0.7349.

where

r(z) = H�1
0 |⌦K |�

1
2 sinh


|⌦K |

1
2

Z z

0

dz0

E(z0)

�
. (24)

Here, H0 = 100h km s�1 Mpc�1 is the Hubble constant, E(z) is the reduced Hubble
parameter and is defined as E(z) ⌘ H(z)/H0, and sinh(x) = sin(x), x, sinh(x) for ⌦K <
0, ⌦K = 0, and ⌦K > 0, respectively.

The observed value of the distance modulus is given as

µobs = m⇤
B �MB + ↵X1 + � C , (25)

where m⇤
B is the observed peak magnitude in the rest-frame of B band, X1 describes

the time stretching of light-curve, and C describes the SN color at maximum brightness.
As we mentioned above, the JLA data includes 740 SNIa; for each SNIa, the observed
values of m⇤

B, X1, and C are given in reference [34]. The �2 function for JLA observation
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parameter and is defined as E(z) ⌘ H(z)/H0, and sinh(x) = sin(x), x, sinh(x) for ⌦K <
0, ⌦K = 0, and ⌦K > 0, respectively.

The observed value of the distance modulus is given as

µobs = m⇤
B �MB + ↵X1 + � C , (25)

where m⇤
B is the observed peak magnitude in the rest-frame of B band, X1 describes

the time stretching of light-curve, and C describes the SN color at maximum brightness.
As we mentioned above, the JLA data includes 740 SNIa; for each SNIa, the observed
values of m⇤

B, X1, and C are given in reference [34]. The �2 function for JLA observation

7

can be written as
�2
SNIa = (µobs � µth)

†Cov�1
SNIa(µobs � µth) , (26)

where CovSNIa is the covariance matrix of the JLA observation.
For theH0 measurement, we use the result of direct measurement of Hubble constant,

given by Riess et al. [36], H0 = 73.24 ± 1.74km s�1Mpc�1, which is derived from a re-
analysis of Cepheid data. However, this measurement is in tension with Planck data [37].
The �2 function for the H0 measurement is

�2
H0

=

✓
h� 0.7324

0.0174

◆2

. (27)

If we compare our model with the LCDM model, �2 cannot make fair comparison, for
them having di↵erent numbers of free parameters, because a model with more parameters
has more tendency to have a lower value of �2. Thus, to make a fair comparison, we
apply the Akaike information criterion (AIC) [38] and Bayesian information criterion
(BIC) [39] to do analysis. The AIC and BIC are defined as AIC ⌘ �2 lnLmax + 2k and
BIC ⌘ �2 lnLmax+k lnN , respectively, where Lmax is the maximum likelihood, k is the
number of parameters, and N is number of data points used in the model-data fit. For
Gaussian errors, one can use �2

min = �2 lnLmax.

Parameters LCDM hEDU

h 0.7330± 0.0180 0.7349± 0.0179
⌦m 0.2969± 0.0352 0.0299± 0.0515
⌦I — 0.4382± 0.1317
↵ 0.1403± 0.0068 0.1409± 0.0068
� 3.1081± 0.0892 3.1144± 0.0896

�2
min 695.063 694.321

�AIC 0 1.258
�BIC 0 5.866

Table 1: Fitting values and uncertainties of the cosmological parameters.

We introduce AIC and BIC statistics for the sake of comparing di↵erent models
due to the di↵erent free parameters. Obviously, a model with a smaller AIC value
means a better model in terms of data fitting, while a smaller BIC value implies that
such a model is economically favorable if further data points are implemented. In our
analysis, we use LCDM as a reference model, for such model is currently the best data-
fitting model among all existing ones; hence, for our analysis, we need to pay more
attention to the relative values of AIC and BIC as �AIC = AIChEDU ��AICLCDM and
�BIC = BICHPU � �BICLCDM, respectively. Therefore, we need to calculate �AIC =
��2

min � 2�k and �BIC = ��2
min ��klnN . It is worth noticing that, in terms of data

fitting, the model with 0 < �AIC < 2 have a substantial support; the models with
4 < �AIC < 7 have considerably less support, and the models with �AIC > 10 have
essentially no support, with respect to the reference model. Concerning the BIC, the
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We study a holographic model of the late time universe which on the hypersurface in a flat bulk

spacetime. Both of the dark energy and the dark matter are assumed to emerge from the holographic

stress-energy tensor. We fit the modified Friedmann equation with the supernova data, the the result

match very well with our theoretical assumptions. Instead of ⌦M = 0.30 in the ⇤CDM model, only

⌦M = 0.04 is required in our model, and the e↵ects of dark matter and dark energy can identified

as the holographic stress-energy tensor. We also check the swampland criterion of this holographic

dark sector model, where the e↵ective scalar potential is derived.

APPENDIX

⇤CDM :
H(z)

H0
=

p
⌦⇤ + (⌦m)(1 + z)3, (1)

sDGP :
H(z)

H0
=

s
⌦`

2
+ ⌦m(1 + z)3 +


⌦2

`

4
+ ⌦`⌦m(1 + z)3

�1/2
, (2)

hFRW :
H(z)

H0
=

s
⌦⇤

2
+ ⌦m(1 + z)3 +


⌦2

⇤

4
+ ⌦⇤⌦m(1 + z)3 + ⌦⇤⌦I(1 + z)4

�1/2
. (3)

LCDM :
H(z)2

H2
0

= ⌦⇤ + ⌦m(1 + z)3 (4)

sDGP :
H(z)2

H2
0

=
⌦⇤

2
+ ⌦m(1 + z)3 +

⌦⇤

2

r
1 +

4⌦m

⌦⇤
(1 + z)3 (5)

hEDU :
H(z)2

H2
0

=
⌦⇤

2
+ ⌦m(1 + z)3 +

⌦⇤

2

r
1 +

4⌦m

⌦⇤
(1 + z)3 +

4⌦I

⌦⇤
(1 + z)4 (6)

sDGP :
H(z)

H0
=

s
⌦⇤

4
+

✓
⌦⇤

4
+ ⌦m(1 + z)3

◆
+


⌦2

⇤

4
+ ⌦⇤⌦m(1 + z)3

�1/2
, (7)

=

r
⌦⇤

4
+

s✓
⌦⇤

4
+ ⌦m(1 + z)3

◆
(8)

hFRW :
H(z)

H0
=

s
⌦⇤

2
+ ⌦m(1 + z)3 +


⌦2

⇤

4
+ ⌦⇤⌦m(1 + z)3 + ⌦⇤⌦I(1 + z)4

�1/2
. (9)
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wD =
pD
⇢D

The modified Friedmann equation is,

H(t)2 =
4c

4

3
[⇢M (t) + ⇢H(t)] , H2

0 =
4c

4

3
⇢c . (3.31)

And the energy conservation equation remains

⇢̇ı(t) = �3H(t)
⇥
⇢ı(t) + pı(t)/c

2
⇤
, ı = M, H . (3.32)

Again we use the same setting in (2.24), considering that ⇢c =
3
4

H2
0

c4
, we have

⌦⇤ =
⇢⇤
⇢c

=
c2

L2H2
0

, ⇢⇤ =
3

4

1

c2L2
, L =

5
4

. (3.33)

Putting (3.29) into (3.31), the modified Friedmann equation is summarized as

H(t)2

H2
0

=
⌦M

a(t)3
+ ⌦1/2

⇤


H(t)2

H2
0

+
⌦I

a(t)4

�1/2
, ⌦I ⌘ Ic2

H2
0

. (3.34)

Or equivalently,

H(t)2

H2
0

=
⌦⇤

2
+

⌦M

a(t)3
+


⌦2
⇤

4
+

⌦⇤⌦M

a(t)3
+

⌦⇤⌦I

a(t)4

�1/2
. (3.35)

We named this Scenario as the holographic FRW(hFRW) model. Instead of using the ⇤CDM

parameterization in (2.7), we has a di↵erent set of parameters in the hFRW model. Notice

here that by setting ⌦M = ⌦B+⌦D and ⌦I = 0, we can recover the usual Friedmann equation

(3.21) of the sDGP model. While if setting ⌦M = ⌦B and turning the parameter ⌦I , it can

be shown that one is able to recover our toy constraint relation (2.9).

Firstly, we need to match these parameters in hFRW model with that in the constraint

relation (2.34),

⌦̃⇤ = ⌦⇤, ⌦̃D = ⌦H(t)� ⌦⇤, ⌦̃B ⌘ ⌦M

a(t)3
=

H(t)2

H2
0

� ⌦H(t), (3.36)

w̃D = �1� 1

3H(t)

⌦̇H(t)
⌦H(t)� ⌦⇤

, ⌦H(t) ⌘ ⇢H
⇢c

= ⌦1/2
⇤

hH(t)2

H2
0

+
⌦I

a(t)4

i1/2
. (3.37)

In particular, taking the derivative of (3.34) and eliminating ⌦M with (3.34) again will lead

to the identical relation of Ḣ(t), as well as w̃D(t) from (3.37),

Ḣ(t) = �3H(t)2

hq
H(t)2

H2
0

+ ⌦I
a(t)4 �p

⌦⇤

i
� 1

3
⌦I
a(t)4
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H2
0

2
q

H(t)2

H2
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a(t)4 �p

⌦⇤

, (3.38)
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hq

H(t)2

H2
0

+ ⌦I
a(t)4 �p

⌦⇤

i
� 1

3
⌦I
a(t)4

� hqH(t)2

H2
0

+ ⌦I
a(t)4 �p

⌦⇤

i
2
q

H(t)2

H2
0

+ ⌦I
a(t)4 �p

⌦⇤

. (3.39)

– 13 –

This is the main constraint relation in this section. Since in Einstein field equations (2.14),

Tµ⌫ is the stress-energy tensors of baryonic matter and radiation,

Tµ⌫ = Tµ⌫
B + Tµ⌫

R , Tµ⌫
B = (⇢B)u

µu⌫ , Tµ⌫
R = (⇢R)u

µu⌫ + pRh
µ⌫ , (2.29)

where ⇢B is the mass density baryonic matter, hµ⌫ = gµ⌫ + uµu⌫ and uµ is the velocity in d

dimensions. The dark energy and dark matter are all assumed to be related to the extrinsic

curvature of the hypersurface embedded in the higher dimensional flat bulk. We take the

Brown-York stress-energy tensor hT iµ⌫ , which is playing the role of dark energy and dark

matter,

hT iµ⌫ = hT iµ⌫⇤ + hT iµ⌫D , hT iµ⌫⇤ = �(⇢⇤c
2)gµ⌫ , hT iµ⌫D = (⇢D)u

µu⌫ + pDh
µ⌫ . (2.30)

Putting them back into the constraint equation (2.28), we have

(⇢⇤ + ⇢D)
h
d⇢⇤ � (d� 2)⇢D � 2(d� 1)

pD
c2

i
= ⇢̃⇤

n
d⇢⇤ + ⇢B +

h
⇢D � (d� 1)

pD
c2

i
+

h
⇢R � (d� 1)

pR
c2

io
. (2.31)

If setting ⇢̃⇤ = ⇢⇤ and with equation (2.27), we arrive at

⇢2D =
⇢⇤

d� 2

h
⇢D � ⇢B � ⇢R + (d� 1)

pR
c2

i
� d� 1

d� 2

pD
c2

(2⇢D + ⇢⇤) . (2.32)

When d = 4, the stress-energy tensor of radiation is traceless �⇢Rc
2 +3pR = 0. Keeping

the pressure pD of the dark matter in the constraint relation (2.32) leads to

⇢2D =
⇢⇤

2(1 + 3w̃D)

⇥
⇢D(1� 3w̃D)� ⇢B

⇤
, w̃D ⌘ pD

⇢Dc2
. (2.33)

w̃D denotes the e↵ective state equation of the emergent dark matter, which can be time

dependent in general. Dividing both sides of (2.33) by the squire of the critical energy

density ⇢2c in (2.6), we obtain the generalized constraint relation

⌦̃2
D =

⌦̃⇤

2(1 + 3w̃D)

⇥
⌦̃D(1� 3w̃D)� ⌦̃B

⇤
. (2.34)

The components have been identified as

⌦̃⇤ ⌘ ⇢⇤/⇢c, ⌦̃D ⌘ ⇢D/⇢c, ⌦̃B ⌘ ⇢B/⇢c, (2.35)

which can be time dependent in general case.

We will take the assumption that the evolution of the late time universe is governed by

the ⇤CDM parameterization, and the total dark components are identified as the Brown-

York stress-energy tensor in (2.3). We also assume the emergent dark matter is pressureless

at t = t0 for now and discuss the otherwise later in this paper. Through setting w̃D = 0 in

(2.34), and considering (2.8), we can obtain our main toy constraint in (2.9),

⌦2
D =

1

2
⌦⇤(⌦D � ⌦B). (2.36)
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In particular, taking the derivative of (34) and eliminating ⌦M with (34) again will lead to the identical relation of
Ḣ(t), as well as w̃D(t) from (37),

Ḣ(t) = �3H(t)2

hq
H(t)2

H2
0

+ ⌦I
a(t)4 �p

⌦⇤

i
� 1

3
⌦I

a(t)4

�H(t)2

H2
0

2
q

H(t)2

H2
0

+ ⌦I
a(t)4 �p

⌦⇤

, (38)
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hq

H(t)2

H2
0
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a(t)4 �p

⌦⇤

i
� 1

3
⌦I

a(t)4

� hqH(t)2

H2
0

+ ⌦I
a(t)4 �p

⌦⇤

i

2
q

H(t)2

H2
0

+ ⌦I
a(t)4 �p

⌦⇤

. (39)

One can check that the general constraint relation [20] is satisfied automatically after plugging in above quantities
(36) and (39), at any cosmological time t. Now let us compare it with the late time evolution of ⇤CDM model with
Friedmann equation. If only setting ⌦M = ⌦B , and equalizing the right hand side of (35) at a(t0) = 1, we arrive at
⌦2

D = ⌦⇤⌦I � ⌦⇤ (⌦D � ⌦B). Thus, once taking ⌦I = 3
2 (⌦D � ⌦B), we can recover our toy constraint relation.

sDGP
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FIG. 1: Left: The reduced Hubble parameters H(z)/H0 in terms of the redshift z in various models. Right: The evolution
of state equations w̃D(z) in terms of the redshift z in various models. ⇤CDM: The plotting functions are in (46) and (45),
with the parameters in (49); sDGP: The plotting functions are in (47) and (44), with the fitting parameter ⌦M = 0.21 in [13];
hFRW: The plotting functions are in (48) and (45), with a special choice of the parameters ⌦M = ⌦B , ⌦I = 3

2 (⌦D � ⌦B),
along with the values in (49).

Finally, we summarize the normalized Hubble parameters H(z)/H0 in terms of the redshift z in various models.
The redshift z is related to the scale factor via a(t)/a(t0) = 1/(1+ z). Considering (21)(35) and setting a(t0) = 1, we
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One can check that the general constraint relation [20] is satisfied automatically after plugging in above quantities
(36) and (39), at any cosmological time t. Now let us compare it with the late time evolution of ⇤CDM model with
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FIG. 1: Left: The reduced Hubble parameters H(z)/H0 in terms of the redshift z in various models. Right: The evolution
of state equations w̃D(z) in terms of the redshift z in various models. ⇤CDM: The plotting functions are in (46) and (45),
with the parameters in (49); sDGP: The plotting functions are in (47) and (44), with the fitting parameter ⌦M = 0.21 in [13];
hFRW: The plotting functions are in (48) and (45), with a special choice of the parameters ⌦M = ⌦B , ⌦I = 3

2 (⌦D � ⌦B),
along with the values in (49).

Finally, we summarize the normalized Hubble parameters H(z)/H0 in terms of the redshift z in various models.
The redshift z is related to the scale factor via a(t)/a(t0) = 1/(1+ z). Considering (21)(35) and setting a(t0) = 1, we

Ref: [arXiv: JHEP 1810 (2018) 009] by Cai, Sun, Zhang

4

The e↵ective cosmological constant in the future infinity turns out to be ⇤ = 3
L2 [6]. The modified Friedmann equation

becomes

H(t)2 =
4c

4

3
[⇢m(t) + ⇢d(t)] . (17)

Plugging (14) into (17) and considering the relation between the redshift z and the scale factor via a(t)/a(t0) =
1/(1 + z), we arrive at the normalized Hubble parameters H(z)/H0 in terms of the redshift z, which is the modified
Friedmann equation in the hEDU

H(z)2

H2
0

=
⌦⇤

2
+ ⌦m(1 + z)3 +

⌦⇤

2

r
1 +

4

⌦⇤

h
⌦m(1 + z)3 + ⌦I(1 + z)4

i
(18)

Taking (18) at z = 0 with H0 ⌘ H(z)|z=0, we have the relation between di↵erent components

1 = ⌦m +
p
⌦⇤(1 + ⌦I) ) ⌦⇤ =

(1� ⌦m)2

(1 + ⌦I)
. (19)

Notice here that by setting ⌦I = 0, we can recover the usual Friedmann equation of the self-accelerating branch of
the DGP braneworld model (sDGP). When ⌦I ⌧ 1, the behavior of this term is more like the dark radiation [33]. In
this holographic model of the emergent dark universe (hEDU), ⌦I turns out not to be so small, such that the whole
dark sector, including the dark energy and apparent dark matter, is expected to be included in the holographic dark
fluid [6].

Fitting Parameters with the SNIa and H0 data. — In this section, we put constraints on model parameters
using the modified Friedmann equation (18) and the observational data. We also compare our result with that of the
LCDM model, which is currently the best data-fitting model among all existing ones. The Friedmann equation in the
LCDM model is given as

H(z)2

H2
0

= ⌦⇤ + ⌦m(1 + z)3, ⌦⇤ = 1� ⌦m. (20)

We employ the Markov-chain Monte Carlo (MCMC) sampling analysis together with the observational data. In
particular, in our numerical analysis, we use Type Ia supernovae (SNIa) data and the direct measurement of Hubble
constant H0. See Appendix A for details of data and the statistical methods used in this work. We plot one-
dimensional probability distribution and two-dimensional observational contours in Fig. 1 and the best-fit values are
listed in Table I in comparison to LCDM. From the Table I, one can see that H0 = 73.49±1.7998 km s�1Mpc�1 is the
value closer to that obtained from the local measurement [36]. To compare with the ⌦m = 0.2969 in LCDM model,
the matter component ⌦m = 0.0299 in hEDU model turns out to be surprisingly small. However, it matches well with
our theoretical assumption that only the normal matter is required in the hEDU model. Moreover, the �AIC = 1.258
value implies that our model fits well with the observational data. However, the �BIC = 5.866 value indicates that,
if more data will be used, �AIC between the two models might be, in some extent, increasing, so only the future data
can tell us more about how well these models relatively fit the data. In the following section, based on parameters in
Table I, we will recover an e↵ective potential with the dynamical scalar field.

Parameters LCDM hEDU

h 0.7330± 0.0180 0.7349± 0.0179

⌦m 0.2969± 0.0352 0.0299± 0.0515

⌦I — 0.4382± 0.1317

↵ 0.1403± 0.0068 0.1409± 0.0068

� 3.1081± 0.0892 3.1144± 0.0896

�2
min 695.063 694.321

�AIC 0 1.258

�BIC 0 5.866

TABLE I. Fitting values and uncertainties of the cosmological parameters.

https://inspirehep.net/author/profile/Yun.Long.Zhang.1
https://inspirehep.net/record/1644878
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relative value�BIC = BIChEDU�BIC⇤CDM provides the following situations. The model
with �BIC  2 indicates that the comparison model is consistent with the reference
model. The models with 2  �BIC  6 indicates the positive evidence against the
comparison model, whereas for �BIC � 10 such evidence becomes strong. As the result
shown, according to �AIC = 1.258, our model fits well with the observational data.
However, �BIC = 5.866 indicates that if more data will be used, �AIC between the
two models might be, in some extent, increasing, so only the future data can tell us more
about how well theses models relatively fit the observational data.

An overall presentation of constraints is listed in Table 1 for our model. The table
contains the fitting parameters, including the intrinsic values (↵, �) of JLA, and goodness
of fit statistics (�2

min) for our model. For comparison we additionally provide the results
of the usual LCDMmodel of cosmology. From the Table 1, one can see thatH0 = 73.49±
1.7998 km s�1Mpc�1 is the value closer to that obtained from the local measurement [36].
Significantly, the matter component ⌦m in hEDU model turns out to be very small,
compared with the ⌦m in LCDM. It matches well with our theoretical assumption in
section 2, that only the normal matter is required in the hEDU model. In the next
section, based on these parameters from Table 1, we will recover an e↵ective potential
with the dynamical scalar field.

4 Checking on the Swampland Criteria

We can write the e↵ective field theory of one dynamical scalar field for the late-time
accelerating universe in the following action,

Stot =

Z
d4x

p
�g

h 1

24
R + Lm � 1

2
(@�)2 � V (�)

i
. (28)

The swampland criteria (2) and (3) on an e↵ective field theory which is supposed to be
consistent with a theory of quantum gravity were reviewed in the introduction.

In the hEDU model, the holographic dark fluid in (8) is assumed to be the pure
gravitational e↵ects, which can be considered as the dynamics of an e↵ective vacuum.
So is there an e↵ective potential of the dynamical scalar field in (28), which can recover
the same e↵ects? From the holographic energy density (13) and pressure (14), comparing

with the energy density ⇢� = �̇2

2 + V (�) and pressure p� = �̇2

2 � V (�) of the scalar field
in (28), we can reconstruct the e↵ective potential and the scalar field of the holographic
dark fluid, which satisfies

V [�(t)] =
1

2
[⇢d(t)� pd(t)] , (29)

�̇(t) = �
p
⇢d(t) + pd(t) . (30)

For convenience, we have chosen the negative sign in (30). Taking the parameters from
Table 1, we can numerically plot the �(z) and V (�) in Figure 2, by using the relation
dt
dz =

�1
(1+z)H(z) . From the modified Friedmann equation (17), we have seen that sDGP is
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been studied in [6]. With the bulk metric (11), the energy
density and pressure in hT idµ⌫ are calculated to be

⇢d(t) = ⇢c
p
⌦⇤

s
H(t)2

H2
0

+
⌦I

a(t)4
, (14)

pd(t) = � ⇢̇d
3H(t)

� ⇢d , (15)

where the critical density and other parameters are given
by

⇢c =
3H2

0M
2
P

~c , ⌦⇤ =
c2

L2H2
0

, ⌦I ⌘ Ic2

L2H2
0

. (16)

The e↵ective cosmological constant in the future infinity
turns out to be ⇤ = 3

L2 [6]. The modified Friedmann
equation becomes

H(t)2 =
4c

4

3
[⇢m(t) + ⇢d(t)] . (17)

Plugging (14) into (17) and considering the relation be-
tween the redshift z and the scale factor via a(t)/a(t0) =
1/(1+z), we arrive at the normalized Hubble parameters
H(z)/H0 in terms of the redshift z, which is the modified
Friedmann equation in the hEDU

H(z)2

H2
0

=
⌦⇤

2

r
1 +

4

⌦⇤

h
⌦m(1 + z)3 + ⌦I(1 + z)4

i

+
⌦⇤

2
+ ⌦m(1 + z)3. (18)

Taking (18) at z = 0 with H0 ⌘ H(z)|z=0, we have the
relation between di↵erent components

1 = ⌦m +
p

⌦⇤(1 + ⌦I) ) ⌦⇤ =
(1� ⌦m)2

(1 + ⌦I)
. (19)

Notice here that by setting ⌦I = 0, we can recover the
usual Friedmann equation of the self-accelerating branch
of the DGP braneworld model (sDGP). When ⌦I ⌧ 1,
the behavior of this term is more like the dark radiation
[33]. In this holographic model of the emergent dark
universe (hEDU), ⌦I turns out not to be so small, such
that the whole dark sector, including the dark energy and
apparent dark matter, is expected to be included in the
holographic dark fluid [6].

Fitting Parameters with the SNIa and H0

data. — In this section, we put constraints on model
parameters using the modified Friedmann equation (18)
and the observational data. We also compare our re-
sult with that of the LCDM model, which is currently
the best data-fitting model among all existing ones. The
Friedmann equation in the LCDM model is given as

H(z)2

H2
0

= ⌦⇤ + ⌦m(1 + z)3, ⌦⇤ = 1� ⌦m. (20)

We employ the Markov-chain Monte Carlo (MCMC)
sampling analysis together with the observational data.
In particular, in our numerical analysis, we use Type
Ia supernovae (SNIa) data and the direct measurement
of Hubble constant H0. See Appendix A for details
of data and the statistical methods used in this work.
We plot one-dimensional probability distribution and
two-dimensional observational contours in Fig. 1 and
the best-fit values are listed in Table I in comparison
to LCDM. From the Table I, one can see that H0 =
73.49 ± 1.7998 km s�1Mpc�1 is the value closer to that
obtained from the local measurement [36]. To compare
with the ⌦m = 0.2969 in LCDM model, the matter com-
ponent ⌦m = 0.0299 in hEDU model turns out to be
surprisingly small. However, it matches well with our
theoretical assumption that only the normal matter is re-
quired in the hEDU model. Moreover, the �AIC = 1.258
value implies that our model fits well with the observa-
tional data. However, the �BIC = 5.866 value indicates
that, if more data will be used, �AIC between the two
models might be, in some extent, increasing, so only the
future data can tell us more about how well these models
relatively fit the data. In the following section, based on
parameters in Table I, we will recover an e↵ective poten-
tial with the dynamical scalar field.

FIG. 1. The 68.3%, 95.4%, and 99.7% confidence con-
tours for various parameter combinations. ⌦m, ⌦I , h =
H0/(100 km s�1 Mpc�1) and 1D marginalized likelihood for
h. The best fit values are at ⌦m = 0.0299, ⌦I = 0.4382 and
h = 0.7349.

Checking on the Swampland Criteria. — We
can write the e↵ective field theory of one dynamical scalar
field for the late-time accelerating universe in the follow-

8

B. Fitting Functions of the E↵ective Poten-
tial. — Notice that in the region 0 . �

MP
. 1, the

e↵ective potentials in Figure 2 can be fitted well with
the polynomial formula,

V (�)

H2
0M

2
P

=
⇤0

H2
0

+
h2

2

�2

M2
P

+
h3

3!

�3

M3
P

+
h4

4!

�4

M4
P

+ · · · .

(35)

Where ⇤0 = 3⌦⇤H
2
0/c

2 is the e↵ective cosmological con-
stant at the future infinity [6] and it can be calculated
from ⌦⇤ in Table II. The linear term h1

�
MP

is dropped
because we have V 0(�)|�!0 = 0. The fitting parameters
h2, h3, h4 are listed in Table III, where h2 > 0 implies
that the e↵ective mass of the scalar field � is positive.

Models h2 h3 h4

sDGP 1.73 �2.42 21.0

hEDU 1.32 2.20 4.20

TABLE III. The fitting parameters in the polynomial formula
of the potential in (35).

Models ⇤0/H
2
0 �+ ��

sDGP 1.87 2.19 0.29

hEDU 1.96 1.54 0.51

TABLE IV. The fitting parameters in the exponential formula
of the potential in (36).

Intriguingly, the potentials can also be fitted quite well
with two parameters �+ and �� in the exponential for-
mula,

V (�)

M2
P

=
⇤0

�+ + ��

⇣
�+e

���
�

MP + ��e
�+

�
MP

⌘
. (36)

The ansatz satisfies V (�)|�!0 = ⇤0M
2
P and V 0(�)|�!0 =

0 automatically, and the fitting parameters are listed in
Table IV. It is reasonable as there are only two free pa-
rameters ⌦m and ⌦I in the hEDU model (18), with the
relation in (19). It is also interesting to relate the e↵ec-
tive potential to some top down models in [9].

FIG. 4. 1st: The polynomial fittings with the potential in
(35), the fitted parameters are listed in Table III. 2nd: The
exponential fittings with the potential in (36), the fitted pa-
rameters are listed in Table IV.
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B. Fitting Functions of the E↵ective Poten-
tial. — Notice that in the region 0 . �

MP
. 1, the

e↵ective potentials in Figure 2 can be fitted well with
the polynomial formula,

V (�)

H2
0M

2
P

=
⇤0

H2
0

+
h2

2

�2

M2
P

+
h3

3!

�3

M3
P

+
h4

4!

�4

M4
P

+ · · · .

(35)

Where ⇤0 = 3⌦⇤H
2
0/c

2 is the e↵ective cosmological con-
stant at the future infinity [6] and it can be calculated
from ⌦⇤ in Table II. The linear term h1

�
MP

is dropped
because we have V 0(�)|�!0 = 0. The fitting parameters
h2, h3, h4 are listed in Table III, where h2 > 0 implies
that the e↵ective mass of the scalar field � is positive.

Models h2 h3 h4

sDGP 1.73 �2.42 21.0

hEDU 1.32 2.20 4.20

TABLE III. The fitting parameters in the polynomial formula
of the potential in (35).

Models ⇤0/H
2
0 �+ ��

sDGP 1.87 2.19 0.29

hEDU 1.96 1.54 0.51

TABLE IV. The fitting parameters in the exponential formula
of the potential in (36).

Intriguingly, the potentials can also be fitted quite well
with two parameters �+ and �� in the exponential for-
mula,

V (�)

M2
P

=
⇤0

�+ + ��

⇣
�+e

���
�

MP + ��e
�+

�
MP

⌘
. (36)

The ansatz satisfies V (�)|�!0 = ⇤0M
2
P and V 0(�)|�!0 =

0 automatically, and the fitting parameters are listed in
Table IV. It is reasonable as there are only two free pa-
rameters ⌦m and ⌦I in the hEDU model (18), with the
relation in (19). It is also interesting to relate the e↵ec-
tive potential to some top down models in [9].
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FIG. 4. 1st: The polynomial fittings with the potential in
(35), the fitted parameters are listed in Table III. 2nd: The
exponential fittings with the potential in (36), the fitted pa-
rameters are listed in Table IV.
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If we compare our model with the LCDM model, �2 cannot make fair comparison, for them having di↵erent numbers
of free parameters, because a model with more parameters has more tendency to have a lower value of �2. Thus,
to make a fair comparison, we use the Akaike information criterion (AIC) [38] and Bayesian information criterion
(BIC) [39]. The AIC and BIC are defined as AIC ⌘ �2 lnLmax + 2k and BIC ⌘ �2 lnLmax + k lnN , respectively,
where Lmax is the maximum likelihood, k is the number of parameters, and N is number of data points used in the
model-data fit. For Gaussian errors, one can use �2

min = �2 lnLmax.

A model with a smaller AIC value means a better model in terms of data fitting, while a smaller BIC value
implies that such a model is economically favorable if further data points are implemented. In our analysis, we
use LCDM as a reference model; hence, we need to pay more attention to the relative values of AIC and BIC as
�AIC = AIChEDU��AICLCDM and�BIC = BICHPU��BICLCDM, respectively. We calculate�AIC = ��2

min�2�k
and �BIC = ��2

min � �klnN . It is worth noticing that, in terms of data fitting, the model with 0 < �AIC < 2
have a substantial support; the models with 4 < �AIC < 7 have considerably less support, and the models with
�AIC > 10 have essentially no support, with respect to the reference model. Concerning the BIC, the relative value
�BIC = BIChEDU � BIC⇤CDM provides the following situations. The model with �BIC  2 indicates that the
comparison model is consistent with the reference model. The models with 2  �BIC  6 indicates the positive
evidence against the comparison model, whereas for �BIC � 10 such evidence becomes strong.

B. Fitting Functions of the E↵ective Potential. — Notice that in the region 0 . �
MP

. 1, the e↵ective
potentials in Figure ?? can be fitted well with the polynomial formula,
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+
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+
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+ · · · . (35)

Where ⇤0 = 3⌦⇤H
2
0/c

2 is the e↵ective cosmological constant at the future infinity [6] and it can be calculated from
⌦⇤ in Table II. The linear term h1

�
MP

is dropped because we have V 0(�)|�!0 = 0. The fitting parameters h2, h3, h4

are listed in Table III, where h2 > 0 implies that the e↵ective mass of the scalar field � is positive.

Models h2 h3 h4

sDGP 1.73 �2.42 21.0

hEDU 1.32 2.20 4.20

TABLE III. The fitting parameters in the polynomial formula of the potential in (35).

Models ⇤0/H
2
0 �+ ��

sDGP 1.87 2.19 0.29

hEDU 1.96 1.54 0.51

TABLE IV. The fitting parameters in the exponential formula of the potential in (36).

Intriguingly, the potentials can also be fitted quite well with two parameters �+ and �� in the exponential formula,

V (�)

M2
P

=
⇤0

�+ + ��

⇣
�+e

���
�

MP + ��e
�+

�
MP

⌘
. (36)

The ansatz satisfies V (�)|�!0 = ⇤0M
2
P and V 0(�)|�!0 = 0 automatically, and the fitting parameters are listed in

Table IV. It is reasonable as there are only two free parameters ⌦m and ⌦I in the hEDU model (18), with the relation
in (19). It is also interesting to relate the e↵ective potential to some top down models in [9].

3

Emergent Dark Universe on a Hypersurface. — We consider a 3 + 1 dimensional time like hypersurface
H with the induced metric gµ⌫ and Ricci scalar R, which is embedded into a 4 + 1 dimensional bulk spacetime M
with metric g̃AB and Ricci scalar R. After including the Lagrangian density Lm of the standard model matter on the
hypersurface, we can write down the total action

Stot =

Z

H
d4x

p
�g

⇣ 1

24
R+ Lm +

1

25
K
⌘
+

Z

M
d5x

p
�g̃

⇣ 1

25
R
⌘
, (6)

(7)

where K is the trace of extrinsic curvature of the hypersurface H. The Einstein field equations on the hypersurface
become [6],

1

4
Gµ⌫ = Tm

µ⌫ + hT idµ⌫ , (8)

where the Brown-York stress-energy tensor [7] on H is given by

hT idµ⌫ ⌘ � 2p�g

�(S5)

�gµ⌫
=

1

5
(Kµ⌫ �Kgµ⌫) . (9)

After setting 5 = L4, we can reach the modified Einstein field equations in (1). Notice that in the cuto↵ holography
on fluid/gravity duality, there is no dynamics of the induced metric on the hypersurface [19–23]. Although the modified
Einstein field equations are related to the Dvali-Gabadadze-Porrati (DGP) braneworld models [24–26], we will give a
physical interpretation from holographic scenario together with new parameters.

Considering that our universe is uniform and isotropic at large scale, we take the spatially flat FRW metric in 3+1
dimensions,

ds24 =gµ⌫dx
µdx⌫ = �c2dt2 + a(t)2

⇥
dr2 + r2d⌦2

⇤
. (10)

The consistent embedding of this FRW metric in 4+ 1 dimensional flat spacetime has been studied in [27], where the
bulk metric in Gaussian normal coordinates is

ds25 = dy2 � n(y, t)2 c2dt2 + a(y, t)2
⇥
dr2 + r2d⌦2

⇤
. (11)

The consistent embedding functions are solved as [28–30],

a(y, t)2 = a(t)2 + y2
ȧ(t)2

c2
± 2y

r
a(t)2

ȧ(t)2

c2
+

I

L2
, (12)

n(y, t) =
@ta(y, t)

ȧ(t)
. (13)

The integration constant I is dimensionless after putting a scale factor L2 in (12). In the coordinates of this metric
(11), the hypersurface H is located at y = 0, which is the shared boundary of the half bulk M+ for the region y > 0
and the half bulk M� for the region y < 0.

In the spirit of the membrane paradigm [31, 32], we remove half part of the bulk spacetime, which can be e↵ectively
replaced by the holographic stress tensor hT idµ⌫ in (9). The dynamics of a FRW hypersurface which is embedded
into the higher dimensional flat spacetime has been studied in [6]. With the bulk metric (11), the energy density and
pressure in hT idµ⌫ are calculated to be

⇢d(t) = ⇢c
p
⌦⇤

s
H(t)2

H2
0

+
⌦I

a(t)4
, (14)

pd(t) = � ⇢̇d
3H(t)

� ⇢d , (15)

where the critical density and other parameters are given by

⇢c =
3H2

0M
2
P

~c , ⌦⇤ =
c2

L2H2
0

, ⌦I ⌘ Ic2

L2H2
0

. (16)
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FIG. 2. Left: The e↵ective scalar field �(z) in terms of the redshift z, which is related to the swampland criterion 1 in (2);
Right: The shape of the e↵ective potential V (�) in terms of �. The red circle indicates the present value of �(z)|z=0 ' 0.65MP

for the hEDU model, and the arrow indicates the direction for the future. The parameters in the Friedmann equation (18) are
taken from Table. II.

With the e↵ective potentials, now we can check on the second Swampland Criterion in (3), or say, the refined de
Sitter conjecture. We define the following parameters

�1 ⌘ MP
V 0

V
, V 0 ⌘ dV (�)

d�
=

V̇ (t)

�̇(t)
, (24)

�2 ⌘ M2
P

V 00

V
, V 00 ⌘ d

d�

dV (�)

d�
=

1

�̇(t)

d

dt

h V̇ (t)

�̇(t)

i
. (25)

It is straightforward to plot the numerical result of �1(z) and �2(z) in Figure 3. Thus, we can see that at the present
z = 0, �1(0),�2(0) ⇠ O(1), which is the minimum value between z = 0 and z = 1. In the future infinity, both
of the metric solutions in the sDGP and hEDU models will approach the de Sitter spacetime. We can see that
�1(z)|z!�1 ! 0 from Figure 3. It is because we only consider the late time universe, and our e↵ective potential only
has the minimum in Figure 2. Thus, the first condition in the second swampland criterion in (3) is satisfied at present,
but in tension with the model in the future.

FIG. 3. The parameters �1 ⌘ MP
V 0

V in (24) and �2 ⌘ M2
P

V 00

V in (25), which are plotted in terms of the redshift z. They are
related to the swampland criterion 2 in (3).

It is interesting to notice that �2(z) is still non-vanishing at the future infinity �2(z)|z!�1 ⇠ O(1), which can be
tested with the potential in either (35) or (36) . Thus, we can see that in both of the sDGP and hEDU models, we
still have �2(z) � c3 ⇠ O(1). Or say, near the minimum of the e↵ective potential, we have the condition

M2
P |rirjV | � c3V, c3 ⇠ O(1). (26)

Thus, we can suggest that if the condition (26) can be included in the refined de Sitter conjecture, then some
braneworld models [41] with an asymptotic dS spacetime at the future infinity might be included. Similarly, one
can see for example, an interesting embedding of the generalized models of the Randall-Sundrum [42, 43] braneworld
scenarios within string theory has been discussed in [44].

Conclusion and Discussion. — We study a modified gravity model of the late time accelerating universe,
especially the behavior of the universe evolution including the dark sector. We treat the whole dark sector as the
holographic dark fluid on the FRW hypersurface in a flat bulk [6]. After using the SNIa and H0 data, we fit a new
set of the parameters comparing to the LCDM model. The matter component ⌦m in Table I is very small and ⌦I

e↵ectively contributes to the dark sector, including apparent dark matter component. The data fitting matches well
with the observations and our theoretical assumption.

This hEDU model: emergent dark universe model from the holographic viewpoint, can be implemented into the
improved sDGP braneworld scenario. We also check the recently proposed swampland criteria on the model and
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for the hEDU model, and the arrow indicates the direction for the future. The parameters in the Friedmann equation (18) are
taken from Table. II.

With the e↵ective potentials, now we can check on the second Swampland Criterion in (3), or say, the refined de
Sitter conjecture. We define the following parameters
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It is straightforward to plot the numerical result of �1(z) and �2(z) in Figure 3. Thus, we can see that at the present
z = 0, �1(0),�2(0) ⇠ O(1), which is the minimum value between z = 0 and z = 1. In the future infinity, both
of the metric solutions in the sDGP and hEDU models will approach the de Sitter spacetime. We can see that
�1(z)|z!�1 ! 0 from Figure 3. It is because we only consider the late time universe, and our e↵ective potential only
has the minimum in Figure 2. Thus, the first condition in the second swampland criterion in (3) is satisfied at present,
but in tension with the model in the future.
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It is interesting to notice that �2(z) is still non-vanishing at the future infinity �2(z)|z!�1 ⇠ O(1), which can be
tested with the potential in either (35) or (36) . Thus, we can see that in both of the sDGP and hEDU models, we
still have �2(z) � c3 ⇠ O(1). Or say, near the minimum of the e↵ective potential, we have the condition

M2
P |rirjV | � c3V, c3 ⇠ O(1). (26)

Thus, we can suggest that if the condition (26) can be included in the refined de Sitter conjecture, then some
braneworld models [41] with an asymptotic dS spacetime at the future infinity might be included. Similarly, one
can see for example, an interesting embedding of the generalized models of the Randall-Sundrum [42, 43] braneworld
scenarios within string theory has been discussed in [44].

Conclusion and Discussion. — We study a modified gravity model of the late time accelerating universe,
especially the behavior of the universe evolution including the dark sector. We treat the whole dark sector as the
holographic dark fluid on the FRW hypersurface in a flat bulk [6]. After using the SNIa and H0 data, we fit a new
set of the parameters comparing to the LCDM model. The matter component ⌦m in Table I is very small and ⌦I

e↵ectively contributes to the dark sector, including apparent dark matter component. The data fitting matches well
with the observations and our theoretical assumption.

This hEDU model: emergent dark universe model from the holographic viewpoint, can be implemented into the
improved sDGP braneworld scenario. We also check the recently proposed swampland criteria on the model and
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H(t)2

H2

0

' ⌦B

a(t)3
+ ⌦1/2

⇤


H(t)2

H2

0

+
⌦I

a(t)4

�
1/2

(63)

H2

H2

0

' ⌦B

a3
+

s
⌦

⇤

⇣H2

H2

0

+
⌦I

a4

⌘
(64)

S
Cuto↵

= S
CFT

� S
AdS

|1rc (65)
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S
Rindler

= S
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� S
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|1r0+✏ (67)

(68)

S
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= S
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(69)

Or equivalently we have

H(t)2

H2

0

=
⌦M

a(t)3
+

⌦
⇤

2
+


⌦2

⇤

4
+

⌦
⇤

⌦M

a(t)3
+

⌦
⇤

⌦I

a(t)4

�
1/2

. (70)

Notice here that by setting ⌦M = ⌦B + ⌦D and ⌦I = 0, we can recover the usual Friedmann equation of DGP
model in (52). Now let us compare it with the late time evolution of ⇤CDM model.

H(t)2

H2

0

=
⌦B

a(t)3
+

⌦D

a(t)3
+ ⌦

⇤

. (71)

If only setting ⌦M = ⌦B , and equal the right hand sides of (68) and (69) at a(t
0

) = 1, we arrive at

⌦2

D = ⌦
⇤

⌦I � ⌦
⇤

(⌦D � ⌦B) . (72)

Thus, once taking

⌦I =
3

2
(⌦D � ⌦B) , (73)

we can recover the constraint relation of our toy model in (4). Considering (71) and plugging the ⇤CDM parameter-
ization (69) into the energy density (56) and pressure (57), we have

⇢H ' ⇢c(⌦⇤

+ ⌦D), pH ' �⇢c⌦⇤

. (74)

It is also consistent with the ansatz in our toy model (25). Again in order to make the presentation more clear, we here
neglected the contribution of radiation ⌦R and spacial curvature ⌦K , which can be easily included in the equations
above. Here ⌦I e↵ectively contributes to the emergent dark matter. More detailed studies of this holographic model
with non-zero ⌦I will appear in our future work.

IV. CONNECTION WITH VERLINDE’S APPARENT DARK MATTER

Inspired by the emergent gravity by Verlinde in [6], we have proposed the induced gravity from higher dimensional
flat spacetime which gives rise to the similar mechanism in the above sections. In this section, we are trying to
reconcile the inconsistency in Verlinde’s emergent gravity pointed out by [8]. We present a consistent derivation of
Tully-Fisher relation in the frame of the elastic model and try to resolve some issues in the original Verlinde’s story.
The elastic property can also be realized in the holographic models, for example, the blackfold approach [11], or
including the e↵ective mass terms in the bulk [12].

Thus, in order to embed Verlinde’s emergent gravity with elasticity into a bulk, we sketch the total action as
Sd+1

+ Sd, where

Sd+1

=
1

2d+1

Z
M

dd+1x
p

�g̃ [Rd+1

� 2⇤d+1

+ LM] +
1

d+1

Z
@M

ddx
p�gK, (75)

https://inspirehep.net/record/1711727
https://inspirehep.net/author/profile/Yun.Long.Zhang.1
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Models h2 h3 h4

sDGP 1.73 �2.42 21.0
hEDU 1.32 2.20 4.20

Table 3: The fitting parameters in the polynomial formula of the potential in (31).

Figure 3: Left: The polynomial fittings with the potential in (31), the fitted parameters
are listed in Table 3. Right: The exponential fittings with the potential in (32), the
fitted parameters are listed in Table 4.

Intriguingly, the potentials can also be fitted quite well with two parameters �+ and
�� in the exponential formula,

V (�)

M2
P

=
⇤0

�+ + ��

⇣
�+e

���
�

MP + ��e
�+

�
MP

⌘
. (32)

The ansatz satisfies V (�)|�!0 = ⇤0M
2
P and V 0(�)|�!0 = 0 automatically, and the fitting

parameters are listed in Table 4. It is reasonable as there are only two free parameters
⌦m and ⌦I in the hEDU model (17), with the relation in (18). It is also interesting to
relate the e↵ective potential to some top down models in [9].

Models ⇤0/H
2
0 �+ ��

sDGP 1.87 2.19 0.29
hEDU 1.96 1.54 0.51

Table 4: The fitting parameters in the exponential formula of the potential in (32).

With the e↵ective potentials, now we can check on the second Swampland Criterion
in (3), or say, the refined de Sitter conjecture. We define the following parameters

�1 ⌘ MP
V 0

V
, V 0 ⌘ dV (�)

d�
=

V̇ (t)

�̇(t)
, (33)

�2 ⌘ M2
P

V 00

V
, V 00 ⌘ d

d�

dV (�)

d�
=

1

�̇(t)

d

dt

h V̇ (t)

�̇(t)

i
. (34)
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only 3% of the component in the current universe is required to be the normal matter in
this hEDU model, instead of the 30% in the LCDM model where the dark matter has to
be included. It matches well with our theoretical assumption that only normal matter
is required on the right-hand side of the modified Einstein field equations in (1).

The emergent dark universe model will be asymptotical de Sitter (dS) in the future
infinity. However, it seems di�cult to construct a meta-stable dS vacuum in string
theory. A group of authors [8–11] proposed the conjecture that the scalar potential in
low energy e↵ective theory satisfies,

Criterion 1 :
|��|
MP

 d0, (2)

Criterion 2 : MP |rV | � c1V or M2
P min[rirjV ]  �c2V, (3)

over a certain range of the scalar fields and the positive constants d0, c1, c2 are of order
one ⇠ O(1), if the theory has an ultraviolet (UV) completion consistent with quantum
gravity. Otherwise, the scalar potential is too flat and the theory lies in the swampland.
These conjectures constrain the possible forms of the e↵ective scalar potentials from
the top-down models, which have been studied in the inflationary era [12], present dark
energy dominated universe [13] and the e↵ective potentials in phenomenology [14]. The
swampland conjectures have been used to discuss the possible de Sitter vacua from the
compactifications of string theories [15], related to the Kachru-Kallosh-Linde-Trivedi
(KKLT) approach [16], see also [17] and [18].

In our dark universe model, the dark sector arises from the holographic stress-energy
tensor, which drives the expanding universe. The same stress-energy tensor can also
be reconstructed from the Lagrange density of a scalar field with an e↵ective potential.
From the Friedman equation with the fitting parameters in our model, we derive the
e↵ective scalar potential numerically, such that the derivative of the potential can also
be calculated. We check the conditions in our model and comment on the swampland
criteria. We find that the Criterion 1 in (2) in the hEDU model. However, near the
bottom of the e↵ective potential of hEDU model, we only have

M2
P |rirjV | � c3V, c3 ⇠ O(1), (4)

instead of Criterion 2 in (3). Especially now this condition (4) can include some
braneworld models which are asymptotic de Sitter in the future infinity and avoid some
complications at the bottom of the potential that rV = 0.

In the following section 2, this dark universe model in a flat bulk is reviewed and
the modified Friedmann equation in the present universe is derived. In section 3, the
parameters in the modified Friedmann equation of hEDU model are fitted with the SNIa
and H0 data. Based on these results, in section 4, the e↵ective potential of a dynamical
scalar field is reconstructed to recover the same evolution equation numerically, then the
parameters in the swampland criteria can be calculated. The conclusion and discussion
are summarised in section 5.

3

only 3% of the component in the current universe is required to be the normal matter in
this hEDU model, instead of the 30% in the LCDM model where the dark matter has to
be included. It matches well with our theoretical assumption that only normal matter
is required on the right-hand side of the modified Einstein field equations in (1).

The emergent dark universe model will be asymptotical de Sitter (dS) in the future
infinity. However, it seems di�cult to construct a meta-stable dS vacuum in string
theory. A group of authors [8–11] proposed the conjecture that the scalar potential in
low energy e↵ective theory satisfies,

Criterion 1 :
|��|
MP

 d0, (2)

Criterion 2 : MP |rV | � c1V or M2
P min[rirjV ]  �c2V, (3)

over a certain range of the scalar fields and the positive constants d0, c1, c2 are of order
one ⇠ O(1), if the theory has an ultraviolet (UV) completion consistent with quantum
gravity. Otherwise, the scalar potential is too flat and the theory lies in the swampland.
These conjectures constrain the possible forms of the e↵ective scalar potentials from
the top-down models, which have been studied in the inflationary era [12], present dark
energy dominated universe [13] and the e↵ective potentials in phenomenology [14]. The
swampland conjectures have been used to discuss the possible de Sitter vacua from the
compactifications of string theories [15], related to the Kachru-Kallosh-Linde-Trivedi
(KKLT) approach [16], see also [17] and [18].

In our dark universe model, the dark sector arises from the holographic stress-energy
tensor, which drives the expanding universe. The same stress-energy tensor can also
be reconstructed from the Lagrange density of a scalar field with an e↵ective potential.
From the Friedman equation with the fitting parameters in our model, we derive the
e↵ective scalar potential numerically, such that the derivative of the potential can also
be calculated. We check the conditions in our model and comment on the swampland
criteria. We find that the Criterion 1 in (2) in the hEDU model. However, near the
bottom of the e↵ective potential of hEDU model, we only have

M2
P |rirjV | � c3V, c3 ⇠ O(1), (4)

instead of Criterion 2 in (3). Especially now this condition (4) can include some
braneworld models which are asymptotic de Sitter in the future infinity and avoid some
complications at the bottom of the potential that rV = 0.

In the following section 2, this dark universe model in a flat bulk is reviewed and
the modified Friedmann equation in the present universe is derived. In section 3, the
parameters in the modified Friedmann equation of hEDU model are fitted with the SNIa
and H0 data. Based on these results, in section 4, the e↵ective potential of a dynamical
scalar field is reconstructed to recover the same evolution equation numerically, then the
parameters in the swampland criteria can be calculated. The conclusion and discussion
are summarised in section 5.
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FIG. 2. Left: The e↵ective scalar field �(z) in terms of the redshift z, which is related to the swampland criterion 1 in (2);
Right: The shape of the e↵ective potential V (�) in terms of �. The red circle indicates the present value of �(z)|z=0 ' 0.65MP

for the hEDU model, and the arrow indicates the direction for the future. The parameters in the Friedmann equation (18) are
taken from Table. II.

With the e↵ective potentials, now we can check on the second Swampland Criterion in (3), or say, the refined de
Sitter conjecture. We define the following parameters

�1 ⌘ MP
V 0

V
, V 0 ⌘ dV (�)

d�
=

V̇ (t)

�̇(t)
, (24)

�2 ⌘ M2
P

V 00

V
, V 00 ⌘ d

d�

dV (�)

d�
=

1

�̇(t)

d

dt

h V̇ (t)

�̇(t)

i
. (25)

It is straightforward to plot the numerical result of �1(z) and �2(z) in Figure 3. Thus, we can see that at the present
z = 0, �1(0),�2(0) ⇠ O(1), which is the minimum value between z = 0 and z = 1. In the future infinity, both
of the metric solutions in the sDGP and hEDU models will approach the de Sitter spacetime. We can see that
�1(z)|z!�1 ! 0 from Figure 3. It is because we only consider the late time universe, and our e↵ective potential only
has the minimum in Figure 2. Thus, the first condition in the second swampland criterion in (3) is satisfied at present,
but in tension with the model in the future.
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V in (25), which are plotted in terms of the redshift z. They are
related to the swampland criterion 2 in (3).

It is interesting to notice that �2(z) is still non-vanishing at the future infinity �2(z)|z!�1 ⇠ O(1), which can be
tested with the potential in either (35) or (36) . Thus, we can see that in both of the sDGP and hEDU models, we
still have �2(z) � c3 ⇠ O(1). Or say, near the minimum of the e↵ective potential, we have the condition

M2
P |rirjV | � c3V, c3 ⇠ O(1). (26)

Thus, we can suggest that if the condition (26) can be included in the refined de Sitter conjecture, then some
braneworld models [41] with an asymptotic dS spacetime at the future infinity might be included. Similarly, one
can see for example, an interesting embedding of the generalized models of the Randall-Sundrum [42, 43] braneworld
scenarios within string theory has been discussed in [44].

Conclusion and Discussion. — We study a modified gravity model of the late time accelerating universe,
especially the behavior of the universe evolution including the dark sector. We treat the whole dark sector as the
holographic dark fluid on the FRW hypersurface in a flat bulk [6]. After using the SNIa and H0 data, we fit a new
set of the parameters comparing to the LCDM model. The matter component ⌦m in Table I is very small and ⌦I

e↵ectively contributes to the dark sector, including apparent dark matter component. The data fitting matches well
with the observations and our theoretical assumption.

This hEDU model: emergent dark universe model from the holographic viewpoint, can be implemented into the
improved sDGP braneworld scenario. We also check the recently proposed swampland criteria on the model and
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Conclusion and Discussion. — We study a modified gravity model of the late time accelerating universe,
especially the behavior of the universe evolution including the dark sector. We treat the whole dark sector as the
holographic dark fluid on the FRW hypersurface in a flat bulk [6]. After using the SNIa and H0 data, we fit a new
set of the parameters comparing to the LCDM model. The matter component ⌦m in Table I is very small and ⌦I
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can see for example, an interesting embedding of the generalized models of the Randall-Sundrum [42, 43] braneworld
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Conclusion and Discussion. — We study a modified gravity model of the late time accelerating universe,
especially the behavior of the universe evolution including the dark sector. We treat the whole dark sector as the
holographic dark fluid on the FRW hypersurface in a flat bulk [6]. After using the SNIa and H0 data, we fit a new
set of the parameters comparing to the LCDM model. The matter component ⌦m in Table I is very small and ⌦I

e↵ectively contributes to the dark sector, including apparent dark matter component. The data fitting matches well
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This hEDU model: emergent dark universe model from the holographic viewpoint, can be implemented into the
improved sDGP braneworld scenario. We also check the recently proposed swampland criteria on the model and
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FIG. 1. The 68.3%, 95.4%, and 99.7% confidence contours for various parameter combinations. ⌦m, ⌦I , h =
H0/(100 km s�1 Mpc�1) and 1D marginalized likelihood for h. The best fit values are at ⌦m = 0.0299, ⌦I = 0.4382 and
h = 0.7349.

Checking on the Swampland Criteria. — We can write the e↵ective field theory of one dynamical scalar
field for the late-time accelerating universe in the following action,

Stot =

Z
d4x

p
�g

h 1

24
R+ Lm � 1

2
(@�)2 � V (�)

i
. (21)

The swampland criteria (2) and (3) on an e↵ective field theory which is supposed to be consistent with a theory of
quantum gravity were reviewed in the introduction.

In the hEDU model, the holographic dark fluid in (9) is assumed to be the pure gravitational e↵ects, which can
be considered as the dynamics of an e↵ective vacuum. So is there an e↵ective potential of the dynamical scalar field
in (21), which can recover the same e↵ects? From the holographic energy density (14) and pressure (15), comparing

with the energy density ⇢� = �̇2

2 + V (�) and pressure p� = �̇2

2 � V (�) of the scalar field in (21), we can reconstruct
the e↵ective potential and the scalar field of the holographic dark fluid, which satisfies

V [�(t)] =
1

2
[⇢d(t)� pd(t)] , (22)

�̇(t) = �
p
⇢d(t) + pd(t) . (23)

For convenience, we have chosen the negative sign in (23). Taking the parameters from Table I, we can numerically
plot the �(z) and V (�) in Figure 2, by using the relation dt

dz = �1
(1+z)H(z) . From the modified Friedmann equation

(18), we have seen that sDGP is a special case of hEDU when ⌦I = 0. Thus, in this section, we will choose the sDGP
as a reference model of hEDU, along with the following parameters.

Models ⌦m ⌦I ⌦⇤

sDGP 0.21 0 0.62

hEDU 0.03 0.44 0.65

TABLE II. The input parameters of the models. The relation 1 = ⌦m +
p

⌦⇤(1 + ⌦I) in (19) is used to obtain ⌦⇤.

The values in the sDGP model are taken from the reference [40], and those values in the hEDU model are taken
from Table I.

In the figure of �(z)/MP in terms of the redshift parameter z, the zero of �(z) is chosen to be at the future infinity
that �(z)|z!�1 = 0. It is clear to see that |��| ⇠ |�(1)| is of order 1 in both models, at the dark energy dominated
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The e↵ective cosmological constant in the future infinity turns out to be ⇤ = 3
L2 [6]. The modified Friedmann equation

becomes

H(t)2 =
4c

4

3
[⇢m(t) + ⇢d(t)] . (17)

Plugging (14) into (17) and considering the relation between the redshift z and the scale factor via a(t)/a(t0) =
1/(1 + z), we arrive at the normalized Hubble parameters H(z)/H0 in terms of the redshift z, which is the modified
Friedmann equation in the hEDU

H(z)2

H2
0

=
⌦⇤

2
+ ⌦m(1 + z)3 +

⌦⇤

2

r
1 +

4

⌦⇤

h
⌦m(1 + z)3 + ⌦I(1 + z)4

i
(18)

Taking (18) at z = 0 with H0 ⌘ H(z)|z=0, we have the relation between di↵erent components

1 = ⌦m +
p
⌦⇤(1 + ⌦I) ) ⌦⇤ =

(1� ⌦m)2

(1 + ⌦I)
. (19)

Notice here that by setting ⌦I = 0, we can recover the usual Friedmann equation of the self-accelerating branch of
the DGP braneworld model (sDGP). When ⌦I ⌧ 1, the behavior of this term is more like the dark radiation [33]. In
this holographic model of the emergent dark universe (hEDU), ⌦I turns out not to be so small, such that the whole
dark sector, including the dark energy and apparent dark matter, is expected to be included in the holographic dark
fluid [6].

Fitting Parameters with the SNIa and H0 data. — In this section, we put constraints on model parameters
using the modified Friedmann equation (18) and the observational data. We also compare our result with that of the
LCDM model, which is currently the best data-fitting model among all existing ones. The Friedmann equation in the
LCDM model is given as

H(z)2

H2
0

= ⌦⇤ + ⌦m(1 + z)3, ⌦⇤ = 1� ⌦m. (20)

We employ the Markov-chain Monte Carlo (MCMC) sampling analysis together with the observational data. In
particular, in our numerical analysis, we use Type Ia supernovae (SNIa) data and the direct measurement of Hubble
constant H0. See Appendix A for details of data and the statistical methods used in this work. We plot one-
dimensional probability distribution and two-dimensional observational contours in Fig. 1 and the best-fit values are
listed in Table I in comparison to LCDM. From the Table I, one can see that H0 = 73.49±1.7998 km s�1Mpc�1 is the
value closer to that obtained from the local measurement [36]. To compare with the ⌦m = 0.2969 in LCDM model,
the matter component ⌦m = 0.0299 in hEDU model turns out to be surprisingly small. However, it matches well with
our theoretical assumption that only the normal matter is required in the hEDU model. Moreover, the �AIC = 1.258
value implies that our model fits well with the observational data. However, the �BIC = 5.866 value indicates that,
if more data will be used, �AIC between the two models might be, in some extent, increasing, so only the future data
can tell us more about how well these models relatively fit the data. In the following section, based on parameters in
Table I, we will recover an e↵ective potential with the dynamical scalar field.

Parameters LCDM hEDU

h 0.7330± 0.0180 0.7349± 0.0179

⌦m 0.2969± 0.0352 0.0299± 0.0515

⌦I — 0.4382± 0.1317

↵ 0.1403± 0.0068 0.1409± 0.0068

� 3.1081± 0.0892 3.1144± 0.0896

�2
min 695.063 694.321

�AIC 0 1.258

�BIC 0 5.866

TABLE I. Fitting values and uncertainties of the cosmological parameters.
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for the hEDU model, and the arrow indicates the direction for the future. The parameters in the Friedmann equation (18) are
taken from Table. II.
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It is straightforward to plot the numerical result of �1(z) and �2(z) in Figure 3. Thus, we can see that at the present
z = 0, �1(0),�2(0) ⇠ O(1), which is the minimum value between z = 0 and z = 1. In the future infinity, both
of the metric solutions in the sDGP and hEDU models will approach the de Sitter spacetime. We can see that
�1(z)|z!�1 ! 0 from Figure 3. It is because we only consider the late time universe, and our e↵ective potential only
has the minimum in Figure 2. Thus, the first condition in the second swampland criterion in (3) is satisfied at present,
but in tension with the model in the future.
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tested with the potential in either (35) or (36) . Thus, we can see that in both of the sDGP and hEDU models, we
still have �2(z) � c3 ⇠ O(1). Or say, near the minimum of the e↵ective potential, we have the condition
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Thus, we can suggest that if the condition (26) can be included in the refined de Sitter conjecture, then some
braneworld models [41] with an asymptotic dS spacetime at the future infinity might be included. Similarly, one
can see for example, an interesting embedding of the generalized models of the Randall-Sundrum [42, 43] braneworld
scenarios within string theory has been discussed in [44].

Conclusion and Discussion. — We study a modified gravity model of the late time accelerating universe,
especially the behavior of the universe evolution including the dark sector. We treat the whole dark sector as the
holographic dark fluid on the FRW hypersurface in a flat bulk [6]. After using the SNIa and H0 data, we fit a new
set of the parameters comparing to the LCDM model. The matter component ⌦m in Table I is very small and ⌦I

e↵ectively contributes to the dark sector, including apparent dark matter component. The data fitting matches well
with the observations and our theoretical assumption.

This hEDU model: emergent dark universe model from the holographic viewpoint, can be implemented into the
improved sDGP braneworld scenario. We also check the recently proposed swampland criteria on the model and
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After considering (15) with T = 0, we have the identity

hT i2⇤
d� 1

� hT i⇤µ⌫hT iµ⌫⇤ = � ⇢̃⇤c
2

d� 1
hT i⇤. (22)

Thus, assuming hT iµ⌫ = hT iµ⌫⇤ ⌘ � ⇤
d

gµ⌫ in the constraint equation (14), the pure de Sitter spacetime satisfies the
above identity automatically. Notice here that the Brown-York stress energy tensor plays the role of dark energy and
there is no matter or dark matter yet in the set-up.

C. Adding Matters with ⇤CDM Parameterization

Next we consider to add small amount of normal matters in with uniform and isotropic distribution. We take
the assumption that the evolution of the late universe is governed by the ⇤CDM parameterization, and the dark
components are identified as our toy model in (9). Considering (19)(21), our assumption for the constraint relation
(15) becomes

hT i2
d� 1

� hT iµ⌫hT iµ⌫ = � ⇢̃⇤c
2

d� 1

⇥
T + hT i⇤. (23)

This is the main constraint relation in this section. Since in Einstein field equations (9), Tµ⌫ is the baryonic visible
matter with mass density ⇢B . The stress energy tensors of baryonic matter and radiation are,

Tµ⌫ = Tµ⌫
B + Tµ⌫

R , Tµ⌫
B = (⇢B)u

µu⌫ , Tµ⌫
R = (⇢R)u

µu⌫ + pRh
µ⌫ , (24)

where hµ⌫ = gµ⌫ + uµu⌫ , and u⌫ is the velocity in d dimensions. The dark energy and cold dark matter are all
assumed to be related to the extrinsic curvature, and hT iµ⌫ is the Brown-York stress energy tensor playing the role
of cold dark matter and dark energy, and

hT iµ⌫ = hT iµ⌫⇤ + hT iµ⌫D , hT iµ⌫⇤ = �(⇢⇤c
2)gµ⌫ , hT iµ⌫D = (⇢D)uµu⌫ . (25)

Putting them back into the constraint equation (23),

�d� 2

d� 1
⇢2D +

2

d� 1
⇢⇤⇢D +

d

d� 1
⇢2⇤ =

1

d� 1
⇢̃⇤

h
d⇢⇤ + ⇢D + ⇢B + ⇢R � (d� 1)

pR
c2

i
. (26)

If setting ⇢̃⇤ = ⇢⇤ and with equation (22), we arrive at

⇢2D =
⇢⇤

d� 2

h
⇢D � ⇢B � ⇢R + (d� 1)

pR
c2

i
. (27)

When d = 4, the stress energy tensor of radiation is traceless �⇢Rc
2 + 3pR = 0. If taking ⇢D ' 5⇢B , ⇢⇤ '

⇢c � ⇢D � ⇢B , we can recover the Verlinde’s constraint relation (5) approximately. In detail, we consider that our
university is uniform and isotropic at large scale, and take the FRW metric in 3 + 1 dimensions,

ds2d = gµ⌫dx
µdx⌫ = �c2dt2 + a(t)2


dr2

1� kr2
+ r2d⌦2

�
. (28)

In the spatial flat ⇤CDM model with k = 0, the Friedmann equation is given by

H(t)2

H2
0

= ⌦⇤ +
⌦D

a(t)3
+

⌦B

a(t)3
+

⌦R

a(t)4
. (29)

H0 is the Hubble constant today at t = t0 and

H(a) ⌘ ȧ(t)

a(t)
, H2

0 =
4c

4

3
⇢c, (30)

which gives the critical mass density of the universe as ⇢c =
3
4

H2
0

c4 and ȧ(t) is the derivative with respect to the time

t. If requiring a(t0) = 1, from (29) we have 1 = ⌦⇤ +⌦B +⌦D +⌦R, then dividing both sides of equation (27) by ⇢2c ,
we have

⌦2
D ' 1

2
⌦⇤(⌦D � ⌦B) (31)

⌧�1
c ' k2

4⇡Tc
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H(t)2

H2
0

' ⌦B

a(t)3
+ ⌦1/2

⇤


H(t)2

H2
0

+
⌦I

a(t)4

�1/2
(63)

H2

H2
0

' ⌦B

a3
+

s
⌦⇤

⇣H2

H2
0

+
⌦I

a4

⌘
(64)

Or equivalently we have

H(t)2

H2
0

=
⌦M

a(t)3
+

⌦⇤

2
+


⌦2

⇤

4
+

⌦⇤⌦M

a(t)3
+

⌦⇤⌦I

a(t)4

�1/2
. (65)

Notice here that by setting ⌦M = ⌦B + ⌦D and ⌦I = 0, we can recover the usual Friedmann equation of DGP
model in (52). Now let us compare it with the late time evolution of ⇤CDM model.

H(t)2

H2
0

=
⌦B

a(t)3
+

⌦D

a(t)3
+ ⌦⇤. (66)

If only setting ⌦M = ⌦B , and equal the right hand sides of (65) and (66) at a(t0) = 1, we arrive at

⌦2
D = ⌦⇤⌦I � ⌦⇤ (⌦D � ⌦B) . (67)

Thus, once taking

⌦I =
3

2
(⌦D � ⌦B) , (68)

we can recover the constraint relation of our toy model in (4). Considering (68) and plugging the ⇤CDM parameter-
ization (66) into the energy density (56) and pressure (57), we have

⇢H ' ⇢c(⌦⇤ + ⌦D), pH ' �⇢c⌦⇤. (69)

It is also consistent with the ansatz in our toy model (25). Again in order to make the presentation more clear, we here
neglected the contribution of radiation ⌦R and spacial curvature ⌦K , which can be easily included in the equations
above. Here ⌦I e↵ectively contributes to the emergent dark matter. More detailed studies of this holographic model
with non-zero ⌦I will appear in our future work.

IV. CONNECTION WITH VERLINDE’S APPARENT DARK MATTER

Inspired by the emergent gravity by Verlinde in [6], we have proposed the induced gravity from higher dimensional
flat spacetime which gives rise to the similar mechanism in the above sections. In this section, we are trying to
reconcile the inconsistency in Verlinde’s emergent gravity pointed out by [8]. We present a consistent derivation of
Tully-Fisher relation in the frame of the elastic model and try to resolve some issues in the original Verlinde’s story.
The elastic property can also be realized in the holographic models, for example, the blackfold approach [11], or
including the e↵ective mass terms in the bulk [12].

Thus, in order to embed Verlinde’s emergent gravity with elasticity into a bulk, we sketch the total action as
Sd+1 + Sd, where

Sd+1 =
1

2d+1

Z
M

dd+1x
p

�g̃ [Rd+1 � 2⇤d+1 + LM] +
1

d+1

Z
@M

ddx
p�gK, (70)

Sd =
1

2d

Z
@M

ddx
p�g (Rd � 2⇤d) +

Z
@M

ddx
p�gLM . (71)

In the bulk the Lagrange density LM represents the e↵ective term which can provide the holographic elasticity. g̃AB

is bulk metric, gµ⌫ is the induced metric on the boundary and K is the trace of the extrinsic curvature. Like in our
toy model, we can set ⇤d+1 = 0 in the bulk, and study the holographic response of elasticity. One may also add ⇤d

in the boundary action Sd, which plays the role of cosmological constant on the boundary theory, or the tension of
the boundary brane.

2

I. INTRODUCTION

The origin of the dark matter and the dark energy is one of the most important issues in current high energy
physics and cosmology. From observations, only 5% of the components of the current universe is visible to us. At
di↵erent scales, ranging from the galactic scale to the cosmic microwave background (CMB), there are many observed
phenomena to test for various models of dark matter and dark energy [1]. The cold dark matter model which treats
the dark matter as collisionless particles is successful at CMB and larger scales, but at the galactic scale, some
discrepancies were proposed [2]. Moreover, the particle dark matter remains elusive from the direct detection so far
[3]. One of the alternatives to the cold dark matter is the modified Newtonian dynamics or modified gravity [1, 2],
which focus on the small scale crisis that cold dark matter cannot explain. Although those modified gravity theories
seem to be less successful in producing the universe evolution picture agreed with CMB and large scale structure data,
they can explain multiple features in galaxy rotational curves such as Tully-Fisher relation [4], Renzo’s Rule [5], etc.

Recently, E. Verlinde proposed emergent modified gravity from volume contribution of entanglement entropy in
the de Sitter spacetime [6], which leads to the apparent dark matter. It is also related to the idea that Einstein
gravity can be emergent from the entropy force with area law [7]. Although the Verlinde’s derivation in [6] received
some doubts on the consistency in the literature [8], we find several Verlinde’s key ideas rather inspiring. One is the
possibility that our macroscopic notions of spacetime and gravity emerge from an underlying microscopic description,
encouraged by the recent development of entangled entropy and quantum information. Another one is viewing dark
matter as merely a gravitational response of the normal matter on the spacetime, so as to derive the dark matter
distribution around the galaxy, the Tully-Fisher relation.

In this paper, we propose a new viewpoint beyond Verlinde’s emergent gravity, which can be considered as a (3+1)
dimensional holographic screen embedded into a higher dimensional flat spacetime. We identify the holographic stress
energy tensor as that of the total dark components. We firstly construct a toy model, which provides a constraint
relation between the densities of dark matter, dark energy and baryonic matter, in the case considering the Lambda
cold dark matter (⇤CDM) parameterization. Furthermore, we generalize our toy model to the holographic Friedmann-
Robertson-Walker (FRW) universe in a flat bulk, and propose a new parameterization from the holographic model,
where the e↵ective dark matter and dark energy are emergent, and are identified with the Brown-York stress energy
tensor [9]. We also compare our approach to the Dvali-Gabadadze-Porrati(DGP) brane world model [10].

To produce the galaxy rotational curves, we further sketch a holographic elastic model with a de Sitter boundary
and fix an inconsistency in the Verlinde’s paper proposed in [8]. We recover the Tully-Fisher relation from the first law
of thermodynamics and elasticity of the “de Sitter medium”. The elasticity can also be realized in black fold approach
[11] or holographic models [12]. Notice here that we adopt the novel idea of elasticity of dark matter in the Verlinde’s
paper. Because the elasticity seems to capture the nature that the apparent dark matter is only the response of the
presence of the normal matters. In the end, we also comment on the relation of the current construction in this paper
with di↵erent scenarios such as brane world model and holographic models of the universe.

In section II, we first introduce the toy model, which leads to the relation between dark matter component and
baryonic matter component of the current universe. In section III, we generalize our toy model to the holographic
FRW universe, and compare it with the DGP brane world scenario. In section IV, we reproduce the Tully-Fisher
relation, with the help of holographic elasticity model and Verlinde’s assumptions. We briefly compare and discuss
the connection between our toy model and other scenarios, such as brane world models, holographic gravity, emergent
gravity and summarize our results in Section V.

II. A TOY CONSTRAINT FOR THE LATE TIME DARK UNIVERSE

We consider a 3+1 dimensional time-like hypersurface with intrinsic metric gµ⌫ and extrinsic curvature Kµ⌫ , which
is embedded as the boundary of a 4+1 dimensional flat bulk spacetime with finite volume. After adding the localized
stress energy tensor Tµ⌫ on the hypersurface, we assume that the induced Einstein field equations on the boundary
are modified as

Rµ⌫ � 1

2
Rgµ⌫ � 1

L
(Kµ⌫ �Kgµ⌫) = 

4

Tµ⌫ . (1)

The length scale L is related to the positive cosmological constant ⇤ = 3/L2. The Einstein constant 
4

= 8⇡G/c4,
G is the Newton gravitational constant and c is the speed of light. Equivalently, we can rewrite the above modified
Einstein field equations in (1) as

Rµ⌫ � 1

2
Rgµ⌫ = 

4

Tµ⌫ + 
4

hT iµ⌫ , (2)
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It is our main result in (4). If we further consider ⌦
⇤

+ ⌦D + ⌦B ' 1 in the late universe, then

⌦2

D =
1

3
(⌦D � ⌦B + ⌦2

B). (32)

Considering ⌦D ' 5⌦B from (6), as well as ⌦B ' 0.05 ⌧ 1, we can also arrive at the Verlinde’s ⌦2

D ' 4

3

⌦B in
(5). On the other hand, since ⌦B + ⌦D . ⌦

⇤

, despite being not so precise, our de Sitter background is still a
good approximation. However, if we consider the dark matter in smaller scales around the galaxies and compare
with galactic rotational curves, we need to consider the e↵ects of back-reaction of normal matters. This is the same
situation in the earlier universe, when matters or radiations dominate the universe component and can not be treated
as perturbations on the background anymore. In such cases, this toy model turns out to be not enough, we will resort
to the more complicated model in the next section.

III. CONNECTION WITH BRANE WORLD MODEL IN A FLAT BULK

In this section, we consider a more consistent embedding of the FRW metric into one higher dimensional flat
spacetime [14]. We take the assumption that the total stress energy tensor of the dark components, including dark
matter and dark energy, are provided by the holographic stress tensor. We discuss its connection to the well studied
DGP brane world model, and with some special parameter choice, we can recover the constrain relation (4) in our
toy model.

Consider the 4 + 1 dimensional flat bulk M with action S
5

and metric g̃AB , along with the 3 + 1 dimensional time
like boundary @M with action S

4

and induced metric gµ⌫ , where

S
5

=
1

2
5

Z
M

d5x
p

�g̃R+
1


5

Z
@M

d4x
p�gK, (33)

S
4

=
1

2
4

Z
@M

d4x
p�g R+

Z
@M

d4x
p�gLM . (34)

K is the trace of extrinsic curvature, and LM is the Lagrange density of matters localized on the boundary. If choosing
the Gaussian normal coordinates of the bulk metric g̃AB , we have

ds2
5

= g̃ABdx
AdxB = dy2 + g̃µ⌫dx

µdx⌫ . (35)

Assume the hypersurface @M located at y = 0. It is the shared boundary of the half bulk M
+

which covers the
region y > 0 and the half bulk M� which covers the region y < 0.

The bulk equations of motion are given by the variation of the total action with the bulk metric g̃µ⌫ ,

1


5

✓
RAB � 1

2
Rg̃AB

◆
+

1


4

✓
Rµ⌫ � 1

2
Rgµ⌫

◆
g̃µAg̃

⌫
B�(y) = TM

µ⌫ g̃
µ
Ag̃

⌫
B�(y) . (36)

with the matching junction condition at the hypersurface y = 0.

hT iK+

µ⌫ � hT iK�
µ⌫ +

1


4

Gµ⌫ = TM
µ⌫ . (37)

where Gµ⌫ ⌘ Rµ⌫ � 1

2

Rgµ⌫ . The e↵ective stress energy tensor from extrinsic curvature is

hT iK±
µ⌫ ⌘ 1


5

�K±
µ⌫ �K±gµ⌫

�
. (38)

We include the e↵ective cosmological constant in the Lagrangian LM , which leads to the stress tensor

TM
µ⌫ = � 2p�g

�

�gµ⌫

✓Z
@M

d4x
p�gLM

◆
. (39)

The extrinsic curvature is K±
µ⌫ ⌘ g̃Aµ g̃

B
⌫ r̃

(AN±
B)

|@M, and N± is chosen as the normal vector of @M along with the
±y directions, respectively.

We consider that our university is uniform and isotropic at large scale, and take the spatially flat FRW metric in
d = 4 dimensions, with the spatially flat metric

ds2
4

=� c2dt2 + a(t)2
⇥
dr2 + r2d⌦

2

⇤
. (40)
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