Vertex algebras associated with hypertoric varieties

Toshiro Kuwabara

University of Tsukuba

Vertex algebras, factorization algebras and applications Kavli IPMU 19th July 2018

Basic Strategy

```
Hypertoric varieties
    = Hamiltonian reduction of T^*\mathbb{C}^N \times \mathbb{C}^M
             by (\mathbb{C}^{\times})^{M}-action
 chiralization
Hypertoric VOAs
    = (\frac{\infty}{2}) BRST reduction of
          \beta\gamma-systems \otimes a Heis. VOA
              by the action of a Heisenberg VA V_0(\mathbb{C}^M).
```

Hypertoric varieties

Hypertoric varieties

= Hamiltonian reduction of
$$T^*\mathbb{C}^N$$
 by torus $(\mathbb{C}^*)^M$.

$$G = (\mathbb{C}^*)^M \ \bigcirc \ V = \mathbb{C}^N$$

$$\sim G \subseteq T^*V$$
, $\mathbb{C}[T^*V]$, Hamiltonian action

Induced action of $\mathfrak{g} = \mathbb{C}^M$ is given by comoment map

$$\mu^*(A_i) = \sum_{k=1}^N \Delta_{ik} x_k y_k \qquad (i = 1, \dots, M)$$

Assumption: Matrix $(\Delta_{ik})_{i,k}$ is unimodular.

Hypertoric varieties

$$egin{aligned} X_0 &= \mu^{-1}(0) /\!\!/ G \ &= \operatorname{\mathsf{Spec}}(\mathbb{C}[T^*V] / \langle \mu^*(A_i) | i = 1, \dots, M
angle)^G \end{aligned}$$

Hypertoric varieties (cont.)

Hypertoric varieties

$$egin{aligned} X_0 &= \mu^{-1}(0) /\!\!/ G \ &= \operatorname{Spec}(\mathbb{C}[T^*V] / \langle \mu^*(A_i) | i = 1, \dots, M \rangle)^G \ X &= X_\delta = \mu^{-1}(0) /\!\!/ _\delta G, \ & \operatorname{GIT} \ \operatorname{quotient} \ \operatorname{wrt} \ \operatorname{a} \ \operatorname{stability} \ \operatorname{param.} \ \delta \end{aligned}$$

We have resolution of singularity $X \longrightarrow X_0$, and X is symplectic manifold. (symplectic resolution) X_0 is known as conical symplectic singularity. X is its symplectic resolution.

Hypertoric varieties (cont.)

Fact (Nagaoka, Losev)

- $(1)^{\exists}\widetilde{X} \longrightarrow \mathfrak{g}^*$, univ. family of symplectic (Poisson) deform. of X.
- $(2)^{\exists}\mathbb{W}$, Namikawa-Weyl group (finite group) $c, c' \in \mathfrak{g}^*$, if $c' \in \mathbb{W}c$, \exists isom. $\mathbb{C}[(\widetilde{X})_c] \simeq \mathbb{C}[(\widetilde{X})_{c'}]$ as Poisson alg, and

$$\mathbb{C}[\mathfrak{g}^*]^{\mathbb{W}} \xrightarrow{\mu^*} \mathbb{C}[\widetilde{X}]^{\mathbb{W}} = (\mathbb{C}[T^*V]^G)^{\mathbb{W}}$$
 is univ. family of Poisson deform. of $\mathbb{C}[X_0] = \mathbb{C}[X]$.

 $\mathbb{C}[\mathfrak{g}^*]^{\mathbb{W}}$ is Poisson center of $\mathbb{C}[\widetilde{X}]^{\mathbb{W}}$.

Hypertoric VAs

We consider VA analog (chiralization) of the above construction.

$$\mathbb{C}[T^*V] \longrightarrow \mathcal{D}^{ch}(V)$$
, $\beta \gamma$ -system (CDO)

$$y_i(z)x_j(w) \sim \frac{\delta_{ij}}{z-w}$$
 $(i,j=1,\ldots,N)$

 $\mathbb{C}[\mathfrak{g}^*]$ \longrightarrow $V_{\langle,\rangle}(\mathfrak{g})$, Heisenberg VA

$$c_i(z)c_j(w)\sim \frac{\langle c_i,c_j\rangle}{(z-w)^2} \qquad (i,j=1,\ldots,M)$$

where $\langle c_i, c_j \rangle = \sum_{k=1}^N \Delta_{ik} \Delta_{jk}$, symm. bilinear form.

Hypertoric VAs (cont.)

Chiral comoment map

$$\mu^*: \mathbb{C}[\mathfrak{g}^*] \longrightarrow \mathbb{C}[T^*V]$$
, comoment map

$$\mu^*(A_i) = \sum_{k=1}^N \Delta_{ik} x_k y_k \qquad (i = 1, \dots, M)$$

$$\longrightarrow \mu_{ch}: V_0(\mathfrak{g}) \longrightarrow \mathcal{D}^{ch}(V) \otimes V_{\langle,\rangle}(\mathfrak{g})$$
, VA hom.

$$\mu_{ch}(A_i(z)) = \sum_{k=1}^N \Delta_{ik} {\circ}_{\circ} x_k(z) y_k(z) {\circ}_{\circ} - c_i(z)$$

Since $V_{\langle , \rangle}(\mathfrak{g})$ has nontrivial OPEs, μ_{ch} is a hom. of (commutative) VAs.

$\frac{\infty}{2}$ – reduction

$$C^{\frac{\infty}{2}+ullet} = \mathcal{D}^{ch}(V) \otimes V_{\langle,\rangle}(\mathfrak{g}) \otimes Cl^{ullet}(\bigoplus_{i=1}^d \mathbb{C}\psi_i^* \oplus \mathbb{C}\psi_i)$$
 where

 $Cl^{\bullet}(\bigoplus_{i=1}^{d} \mathbb{C}\psi_{i}^{*} \oplus \mathbb{C}\psi_{i})$: Clifford VA gen. by ψ_{i}^{*} , ψ_{i} $\psi_{i}(z)\psi_{i}^{*}(w) \sim \delta_{ij}\frac{1}{z-w}$, $\psi_{i}^{*}(z)\psi_{i}^{*}(w) \sim \psi_{i}(z)\psi^{j}(w) \sim 0$

 Cl^{\bullet} and thus $C^{\frac{\infty}{2}+\bullet}$ is \mathbb{Z} -graded VA by the grading $\deg \psi_i^* = +1$, $\deg \psi_i = -1$.

The odd element of degree 1

$$Q(z) = \sum_{i=1}^{d} \mu_{ch}(A_i(z)) \otimes \psi_i^*(z) \in C^{\frac{\infty}{2}+1}$$
 satisfies $(Q_{(0)})^2 = 0$, where $Q_{(0)} = \oint_{z=0} Q(z) dz$.

$$\Longrightarrow$$

 $(C^{\frac{\infty}{2}+\bullet}, Q_{(0)})$ is a cochain complex.

$$\mathsf{D}^{ch}(\widetilde{X}) = H^0(C^{\frac{\infty}{2} + ullet}, Q_{(0)})$$
 and $\mathsf{D}^{ch}(\widetilde{X})^{\mathbb{W}}$, hypertoric VA

Fundamental Properties

Proposition

The cohomology $H^n(C^{\frac{\infty}{2}+\bullet}, Q_{(0)})$ vanishes unless $n \ge 0$.

Proposition

$$\mathsf{D}^{ch}(\widetilde{X})$$
 (and $\mathsf{D}^{ch}(\widetilde{X})^{\mathbb{W}}$) is a VOA (of central charge $-\frac{M+N}{2}$).

 $D^{ch}(X)$ is $\frac{1}{2}\mathbb{Z}_{\geq 0}$ -graded wrt the conformal weight.

Remark

[∃] other choice of conformal vector.

Fundamental Properties (cont.)

Theorem

 $\mathsf{D}^{ch}(\widetilde{X})$ is localized as a sheaf of \hbar -adic VAs over \widetilde{X} . Namely, we can construct a sheaf of \hbar -adic VAs over \widetilde{X} by the same $\frac{\infty}{2}$ -reduction, and $\mathsf{D}^{ch}(\widetilde{X})$ is the VA of its global sections "specialized at $\hbar=1$."

Corollary

The sheaf is locally isomorphic to $\mathcal{D}^{ch}(\mathbb{C}^{N-M})\otimes V_{\langle,\rangle}(\mathfrak{g}).$ \Longrightarrow free field (Wakimoto) realization (embedding).

Remark: The sheaf is microlocal analog of CDO [Gorbounov-Malikov-Schechtman], and was first introduced in

Zhu algebra

For a VOA V, we have an associative algebra called Zhu algebra,

$$A(V) = V/V \circ V, \qquad A \circ B = \sum_{j \geq 0} {\deg A \choose j} A_{(j-2)} B$$

with product $A * B = \sum_{j \geq 0} {\deg A \choose j} A_{(j-1)} B$.

Proposition

Zhu algebra of the hypertoric VOA $D^{ch}(\widetilde{X})$ is a subalgebra of the universal family of (filtered) quantizations of the Poisson algebra $\mathbb{C}[X_0]$.

Analog to W-algebras

The hypertoric VAs are analog of \mathcal{W} -algebras. $\mathfrak{m}_f \subset \mathfrak{q}$, nilp. Lie subalgebra of simple Lie algebra \mathfrak{q} . $V(\mathfrak{m}_f) \subseteq V^k(\mathfrak{q})$ \rightarrow By $\infty/2$ -reduction ([Feigin-Frenkel], [Kac-Roan-Wakimoto]) $\mathcal{W}^k(\mathfrak{q},f)$, affine \mathcal{W} -algebra Zhu algebra = finite W-algebra ([De Sole-Kac]) $\mathfrak{m}_f \subseteq U(\mathfrak{g})$ → By quantum Hamiltonian reduction ([Premet]) $U(\mathfrak{g},f)$, finite \mathcal{W} -algebra (algebra over $Z(\mathfrak{g})\simeq \mathbb{C}[\mathfrak{h}]^{\mathbb{W}}$) $U(\mathfrak{g},f)\otimes_{Z(\mathfrak{g})}\mathbb{C}_{\chi}$ is a quantization of Slodowy variety $\mathbb{S} \cap \mathcal{N}$

$$G = \mathbb{C}^* \bigcirc \mathbb{C}^1 \longrightarrow \mathbb{C}^N$$
 $T^*V = \operatorname{Hom}(\mathbb{C}^1, \mathbb{C}^N) \oplus \operatorname{Hom}(\mathbb{C}^N, \mathbb{C}^1) \simeq \mathbb{C}^{2N}$
 $G = \mathbb{C}^*$
 G acts by the comoment map $\mu^*(A) = \sum_{i=1}^N x_i y_i$.
 \longrightarrow Hamilton red.
 $X = T^*\mathbb{P}^{N-1} \longrightarrow X_0 = \overline{\mathbb{O}^{min}} \subset \mathfrak{sl}(N)$
 \downarrow
 $\widetilde{X} = (T^*\mathbb{P}^{N-1})^{tw} \longrightarrow \widetilde{X}_0 = \text{family of } \overline{\mathbb{O}} \subset \mathfrak{gl}(N)$

$$X = (T^*\mathbb{P}^{N-1})^{W} \longrightarrow X_0 = \text{family}$$

Chiralization

$$\mu_{ch}: V_0(\mathbb{C}^1) \longrightarrow \mathcal{D}^{ch}(\mathbb{C}^N) \otimes V_N(\mathbb{C}^1)$$

$$\mu_{ch}(A(z)) = \sum_{i=1}^N {}_{\circ}^{\circ} x_i(z) y_i(z) {}_{\circ}^{\circ} - c(z)$$
 with $c(z) c(w) \sim N/(z-w)^2$. \longrightarrow By $\infty/2$ -reduction, hypertoric VOA $D^{ch}(\widetilde{X})$.

Remark

 $\mathsf{D}^{ch}(\widetilde{X})$ is localized as a sheaf on $\widetilde{X}=(T^*\mathbb{P}^{N-1})^{tw}$.

Generators of $D^{ch}(\widetilde{X})$

$$E_{ij}(z) = x_i(z)y_j(z)$$
 $(i \neq j)$
 $H_i(z) = {}^{\circ}_{\circ}x_i(z)y_i(z){}^{\circ}_{\circ} - {}^{\circ}_{\circ}x_{i+1}(z)y_{i+1}(z){}^{\circ}_{\circ} (i = 1, ..., N-1)$

Note: These elements commute with $\mu_{ch}(A(z))$.

$$\overrightarrow{V}^{-1}(\mathfrak{sl}_N) \xrightarrow{\longrightarrow} D^{ch}(\widetilde{X}), \text{ hypertoric VOA}$$

$$\downarrow^{\text{assoc. variety}} \qquad \downarrow$$

$$\mathfrak{sl}_N^* \xleftarrow{\longrightarrow} \text{a Dixmier sheet, smaller}$$

Proposition

- (1) For $N \geq 4$, $D^{ch}(\widetilde{X}) = D^{ch}(\widetilde{X})^{\mathbb{W}}$ is a simple affine VOA $L_{-1}(\mathfrak{sl}_N)$ at level -1. Thus, $L_{-1}(\mathfrak{sl}_N)$ is localized as a sheaf on $(T^*\mathbb{P}^{N-1})^{tw}$.
- (2) Zhu algebra $\simeq \mathcal{D}^{tw}(\mathbb{P}^{N-1}) \backslash \mathbb{C}^*c^1$
- (Proof.) The simplicity is most non-trivial. When $N \geq 4$, by [Arakawa-Moreau, 2018]. $(E_{1,N,(-1)}E_{2,N-1}-E_{2,N,(-1)}E_{1,N-1}=0 \text{ in } D^{ch}(\widetilde{X}).)$ (When N=3, the same trick of [AM] with using geometry of $(T^*\mathbb{P}^2)^{tw}$.)

local coord. = free field (Wakimoto) realization:

$$E_{i,i+1}(z) = a_{i-1}^*(z)a_i(z) \qquad (i \ge 2)$$

$$E_{i+1,i}(z) = a_i^*(z)a_{i-1}(z)$$

$$H_i(z) = {}_{\circ}^*a_{i-1}^*(z)a_{i-1}(z){}_{\circ}^{\circ} - {}_{\circ}^*a_i^*(z)a_i(z){}_{\circ}^{\circ}$$

$$E_{12}(z) = a_1(z)$$

$$H_1(z) = -2{}_{\circ}^{\circ}a_1^*(z)a_1(z){}_{\circ}^{\circ} - \sum_{i=2}^{N-1} {}_{\circ}^{\circ}a_i^*(z)a_i(z){}_{\circ}^{\circ} + b(z)$$

$$E_{21}(z) = -{}_{\circ}^{\circ}a_1^*(z)^2a_1(z){}_{\circ}^{\circ} - \sum_{i=2}^{N-1} {}_{\circ}^{\circ}a_1^*(z)a_i^*(z)a_i(z){}_{\circ}^{\circ}$$

$$+ {}_{\circ}^{\circ}a_1^*(z)b(z){}_{\circ}^{\circ} - \partial a_1^*(z)$$

Example 2: $X_0 = \text{Klein sing. of type } A$

affine Dynkin quiver of type $A_{N-1}^{(1)}$

Example 2: $X_0 = \text{Klein sing. of type } A$

comoment map

$$\mu^*(A_i) = x_i y_i - x_{i+1} y_{i+1}$$
 $(i = 1, ..., N-1)$

→ Hamilton red.

$$X = \text{minimal resolution} \longrightarrow X_0 = \mathbb{C}^2/(\mathbb{Z}/N\mathbb{Z})$$

$$\widehat{X} \longrightarrow \widehat{X_0}$$

$$\mathbb{W} = \mathfrak{S}_{N-1}$$

Example 2: $X_0 =$ Klein sing. of type A

Chiralization

$$\mu_{ch}: V_0(\mathbb{C}^{N-1}) \longrightarrow \mathcal{D}^{ch}(\mathbb{C}^N) \otimes V_{\langle , \rangle}(\mathbb{C}^{N-1})$$
$$\mu_{ch}(A_i(z)) = {}_{\circ}^{\circ} x_i(z) y_i(z) {}_{\circ}^{\circ} - {}_{\circ}^{\circ} x_{i+1}(z) y_{i+1}(z) {}_{\circ}^{\circ} - c_i(z)$$

$$c_i(z)c_j(w)\sim rac{\langle c_i,c_j
angle}{(z-w)^2},\quad (\langle c_i,c_j
angle)_{i,j}$$
: Cartan of type A_{N-1}

$$c_i(z)c_j(w) \sim N/(z-w)^2$$
.

 \longrightarrow By $\infty/2$ -reduction, we obtain hypertoric VOA $D^{ch}(\widetilde{X})$, and $D^{ch}(\widetilde{X})^{\mathbb{W}}$.

Remark

 $\mathsf{D}^{ch}(\widetilde{X})$ is localized as a sheaf on \widetilde{X} .

Example 2: $X_0 =$ Klein sing. of type A

Generators of $\mathsf{D}^\mathit{ch}(\widetilde{X})^{\mathbb{W}}$

$$G^{+}(z) = x_{1}(z)x_{2}(z) \dots x_{N}(z),$$

$$G^{-}(z) = y_{1}(z)y_{2}(z) \dots y_{N}(z),$$

$$J(z) = \frac{-1}{N} \sum_{i=1}^{N} {}_{\circ}^{\circ} x_{i}(z)y_{i}(z)_{\circ}^{\circ}$$

$$= -{}_{\circ}^{\circ} x_{1}(z)y_{1}(z)_{\circ}^{\circ} + \frac{N-1}{N} c_{1}(z) + \dots + \frac{1}{N} c_{N-1}(z)$$

These elements commute with all $\mu_{ch}(A_i(z))$'s, and it satisfies the same OPEs as ones of $\mathcal{W}^{-N+1}(\mathfrak{sl}_N, f_{subreg})$.

Example 2: $X_0 =$ Klein sing. of type A

Proposition

- (1) $\mathcal{W}^{-N+1}(\mathfrak{sl}_N, f_{subreg}) \xrightarrow{\sim} \mathsf{D}^{ch}(\widetilde{X})^{\mathbb{W}}$, \exists an isom of VOAs.
- (2) Zhu algebra of $D^{ch}(\widetilde{X})^{\mathbb{W}}$ is \simeq the finite \mathcal{W} -algebra $U(\mathfrak{sl}_N, f_{subreg})$.

Remark

Again, the description by local coord. gives a free field realization of $D^{ch}(\widetilde{X})$ in $\mathcal{D}^{ch}(\mathbb{C}) \otimes V_{\langle , \rangle}(\mathbb{C}^{N-1})$. (Essentially the same as one in [Feigin-Semikhatov])

Example 2: $X_0 = \text{Klein sing. of type } A$

The isomorphism $\mathcal{W}^{-N+1}(\mathfrak{sl}_N, f_{subreg}) \xrightarrow{\sim} \mathsf{D}^{ch}(\widetilde{X})^{\mathbb{W}}$ is compatible with Miura transform:

$$\mathcal{W}^{-N+1}(\mathfrak{sl}_N, f_{subreg}) \xrightarrow{\simeq} \mathsf{D}^{ch}(\widetilde{X}), \text{ hypertoric VOA}$$

$$\downarrow \mathsf{Miura} \qquad \qquad \downarrow \mathsf{Res}_{(T^*\mathbb{P}^1)^{tw} \times \mathbb{C}^{N-2}}^{\widetilde{X}}$$
 $V^{-1}(\mathfrak{sl}_2) \otimes V_{\langle , \rangle}(\mathbb{C}^{N-2}) \longrightarrow \Gamma((T^*\mathbb{P}^1)^{tw} \times \mathbb{C}^{N-2}, \widetilde{D}_{X,\hbar}^{ch})$

Proposition

(3) The above diagram commutes.

Example 3: $X_0 = \overline{\mathbb{O}^{min}}(\{\ell_1, 1^{N-1}\})$

 $\overline{\mathbb{O}^{min}}(\{\ell_1,1^{N-1}\})$: "generalized minimal nilpotent orbit closure" [Nagaoka]

Remark

It generalizes Example 1 and 2.

 $\ell_1=1$: Example 1, N=2: Example 2

Chiral comoment map

$$\mu_{ch}(A_i(z)) = {}^{\circ}_{\circ} x_{1i}(z) y_{1i}(z) {}^{\circ}_{\circ} - {}^{\circ}_{\circ} x_{1i+1}(z) y_{1i+1}(z) {}^{\circ}_{\circ} - c_i(z)$$

$$\mu_{ch}(A_0(z)) = \sum_{i=2}^{N} {}^{\circ}_{\circ} x_i(z) y_i(z) {}^{\circ}_{\circ} + {}^{\circ}_{\circ} x_{11}(z) y_{11}(z) {}^{\circ}_{\circ} - c_0(z)$$

Example 3: $X_0 = \overline{\mathbb{O}^{min}(\{\ell_1, 1^{N-1}\})}$

Generators of $\mathsf{D}^{ch}(\widetilde{X})^{\mathbb{W}}$

$$E_{1i}(z) = x_{11}(z) \dots x_{1\ell_1}(z) y_i(z)$$

$$E_{i1}(z) = x_i(z) y_{11}(z) \dots y_{1\ell_1}(z)$$

$$E_{ij}(z) = x_i(z) y_j(z)$$

$$H_1(z) = \sum_{k=1}^{\ell_1} {}_{\circ}^{\circ} x_{1k}(z) y_{1k}(z) {}_{\circ}^{\circ} - {}_{\circ}^{\circ} x_2(z) y_2(z) {}_{\circ}^{\circ}$$

$$H_i(z) = {}_{\circ}^{\circ} x_i(z) y_i(z) {}_{\circ}^{\circ} - {}_{\circ}^{\circ} x_{i+1}(z) y_{i+1}(z) {}_{\circ}^{\circ}$$

for $i \neq j \geq 2$. Combination of $W^{-\ell_1}(\mathfrak{sl}_{\ell_1+1}, f_{subreg})$ and $L_{-1}(\mathfrak{sl}_N)$!?

Problems

- Representation Theory of $D^{ch}(\widetilde{X})$ construction of simple module etc.
- Symplectic duality vs. "Koszul duality" $T^*\mathbb{P}^{N-1} \leftrightarrow \mathbb{C}^2/(\mathbb{Z}/N\mathbb{Z})$, symplectic dual $\longrightarrow L_{-1}(\mathfrak{sl}_N) \leftrightarrow \mathcal{W}^{-N+1}(\mathfrak{sl}_N, f_{subreg})$, duality?
- "Level deformation" by the same trick as Chebotarov's transitive vertex algebroid with twisting by Courant algebroid.