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Basic Strategy

Hypertoric varieties
= Hamiltonian reduction of T*CN x CM
by (C*)M-action

chiralization

Hypertoric VOAs
= (%-) BRST reduction of
[By-systems @ a Heis. VOA
by the action of a Heisenberg VA V,(CM).
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Hypertoric varieties

Hypertoric varieties
= Hamiltonian reduction of T*CV by torus (C*)™.
G=(CHM cv=cCN
~~~G G T*V, C[T*V], Hamiltonian action
Induced action of g = CM is given by comoment map

N
M*(A,) :ZAika.yk (i: 177M)
k=1

Assumption: Matrix (Aj);k is unimodular.
Hypertoric varieties

Xo=pH0)/G
= Spec(C[T*V]/{(u*(A)]i = 1,...,M))®
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Hypertoric varieties (cont.)

Hypertoric varieties
Xo=n"1(0)/G
— Spec(C[T*VI/(u*(A)li = 1,..., M))°
X = X5 = p1(0)/5sG,
GIT quotient wrt a stability param. ¢

We have resolution of singularity X — Xy, and X is
symplectic manifold. (symplectic resolution)

Xp is known as conical symplectic singularity.

X is its symplectic resolution.
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Hypertoric varieties (cont.)

Fact (Nagaoka, Losev)

(1) X — g*, univ. family of symplectic (Poisson)
deform. of X.

(2) W, Namikawa-Weyl group (finite group)

c, ¢ eg’ ifd € We, 2 isom. C[(X)] ~ C[(X)c] as
Poisson alg, and

Clg'l” £ ClX]" = (C[T*V]%)"
is univ. family of Poisson deform. of C[Xp] = C[X].

C[g*]" is Poisson center of C[X]".
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Hypertoric VAs

We consider VA analog (chiralization) of the above
construction.

C[T* V]~~~ DN(V), By-system (CDO)
Ojj

zZ— W

yi(z)x;(w) ~

Clg*] ~~~ V(y(g), Heisenberg VA

(i,j=1,...,N)

() o NG ij=
Cl()J( ) (Z—W)2 (7./ 177M)

where (¢, ¢;) = S_h_; Ay, symm. bilinear form.
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Hypertoric VAs (cont.)

Chiral comoment map
p*: Clg*] — C[T*V], comoment map
N

M*(AI) :ZAika_yk (i: 177M)
k=1

~~~> eh Vo(g) — DCh(V) 0% V<,>(g), VA hom.

nen(Ai(2)) = D Awixi(2)yi(2)S — ci(2)

k=1

Since V, y(g) has nontrivial OPEs, jics is a hom. of
(commutative) VAs.
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X _ reduction

2

C3H =DN(V)® V, (g) @ CI*(BL, Cv} & Cy)

where

CI*(P:_, Cyr @ Cyy): Clifford VA gen. by o7, 1,

Vi) (W) ~ G725, Vi (2)Y} (w) ~ ¢i(2)d/ (w) ~ 0

CI* and thus C=** is Z-graded VA by the grading
deg ¥ = +1, degyy; = —1.

The odd element of degree 1

Q(2) = 20, pen(Ai(2)) @ ¥i(z) € CFH satisfies

(Qu))* =0, where Q) = §,_, Q(z)dz.

_—

(C=™*, Qu)) is a cochain complex.

D(X) = H(CZ ", Q) and D(X)W, hypertoric VA
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Fundamental Properties

Proposition
The cohomology H"(Cz ", Q) vanishes unless n > 0.

Proposition

D(X) (and D1(X)¥) is a VOA
(of central charge —

- M—2|—N)_

D"(X) is 1Zo-graded wrt the conformal weight.

3 other choice of conformal vector. \
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Fundamental Properties (cont.)

Theorem

Dh(X) is localized as a sheaf of h-adic VAs over X.

Namely, we can construct a sheaf of h-adic VAs over X
by the same 3 -reduction, and DC”(X) is the VA of its
global sect/ons “specialized at h = 1."

The sheaf is locally isomorphic to D(CV") @ V, (g).
—> free field (Wakimoto) realization (embedding).

Remark: The sheaf is microlocal analog of CDO
[Gorbounov-Malikov-Schechtman], and was first introduced in
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Zhu algebra

For a VOA V/, we have an associative algebra called Zhu
algebra,

deg A
A(V)=V/VoV, AoB:Z(ejg_ >AU_2)B
J>0

with product Ax B =, (“4”)Aj_1)B.

Proposition

Zhu algebra of the hypertoric VOA D(X) is a
subalgebra of the universal family of (filtered)
quantizations of the Poisson algebra C[Xp].
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Analog to VV-algebras

The hypertoric VAs are analog of WW-algebras.

ms C g, nilp. Lie subalgebra of simple Lie algebra g.

V(me) G V¥(g)

~~~ By 00/2-reduction ([Feigin-Frenkel], [Kac-Roan-Wakimoto])

WH(g,f), affine W-algebra

Zhu algebra = finite W-algebra  ([De Sole-Kac])

me G U(g)

~~~ By quantum Hamiltonian reduction ([Premet])
U(g, f), finite WW-algebra (algebra over Z(g) ~ C[h]"™)

U(g, f) ®z(g) C, is a quantization of Slodowy variety
SNN.
U(g, f) is the univ. family of quantizations of C[S N N].
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Example 1: X = T*PN-1 (X, = Qmin)

cG=Cc(ct—cV
T*V = Hom(C!, C") ® Hom(C", C') ~ C?V
G=C" N
G acts by the comoment map p*(A) = > _,_; Xiyi.
~~~ Hamilton red.

X = T*PN-1 Xo = Q™ C slI(N)

[ [

X = (T*PV"1)™ —— X, = family of O C gI(N)

\Cl/ -
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Example 1: X = TPV~ (Xy = Qmin)

Chiralization

tieh : Vo(C) — DN(CN) @ Viy(Ch)
N

pen(A(2)) = Z Xi(2)yi(z) — ()

i=1
with c(z)c(w) ~ N/(z — w)?. N
~~~ By 00/2-reduction, hypertoric VOA D(X).

D(X) is localized as a sheaf on X = (T*PN-1)w \
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Example 1: X = TPV~ (Xy = Qmin)

Generators of D1(X)

Ej(z) = xi(z)yj(z) (i #J)
Hi(z) = oxi(2)yi(2); — oxiva(2)yira(2) (P =1,...,N = 1)

Note: These elements commute with pc(A(2)).

SN
V-1(sly) D<(X), hypertoric VOA
lassoc. variety l
sly a Dixmier sheet, smaller

D
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Example 1: X = T*PN-1 (X, = Qmin)

Proposition

(1) For N > 4, D(X) = D(X)W is a simple affine
VOA L_;(sly) at level —1. Thus, L_;(sly) is localized as
a sheaf on (T*PN-1)™w,

(2) Zhu algebra ~ D (PV-1)\C*c!

(Proof.) The simplicity is most non-trivial.

When N > 4, by [Arakawa-Moreau, 2018].
(Exn(-1)E2n-1 — Exn(-1)Ern—1 = 0 in D(X).)
(When N = 3, the same trick of [AM] with using
geometry of (T*P2)™))
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Example 1: X = TPV~ (Xy = Qmin)

local coord. = free field (Wakimoto) realization:
Eiin(z) = aia(2)ai(z)  (i22)
Eit1i(2) = aj(2)ai1(2)
Hi(z) = Jai1(2)aia(2), — cai(2)ai(2),
E12(Z) = al(z)

Hh(2) = —22ai()a(2): - 3 2ai(2)aa): + b2
Ea(e) = ~2ai(Va2): — Y Cai(2)ai()aie):

a1(2)b(z); — 0a,(2)
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Example 2: X; = Klein sing. of type A

affine Dynkin quiver
(1)

/ c! \ of type Ay’

Cl— CLl--------- > CL

O O @)

c* C

TV = 5 Hom(C',C") ® € Hom(C',C) ~ C*M
I—i+1 I—i+1
N-1

G=][]C c TV

i=1
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Example 2: X; = Klein sing. of type A

comoment map

1 (A) = Xiyi — Xiz1Yir1 (i=1,....,N=1)

~~~ Hamilton red.
X = minimal resolution —— Xo = C?/(Z/NZ)

| [

~ —_—

X Xo

~.

(CN_l

W = Gn_1
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Example 2: X; = Klein sing. of type A

Chiralization
VO((CN—l) DCh(CN) ® V (CN 1)
el A2)) = S — r (D ) — (2

ci(z)ci(w) ~ (z<C: |C/1V>) ({ci, ), Cartan of type Ay_

c(2)gi(w) ~ N/(z — w)
> By oo/2-regivuction, we obtain hypertoric VOA
D(X), and D"( X)W

D(X) is localized as a sheaf on X. \
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Example 2: X; = Klein sing. of type A

Generators of DN( X)W

G (2) = xi(2)x(2) ... xn(2),
G (2) = y1(2)y2(2) - - - yw(2),

J(z) = _Wl Z Xi(2)yi(z),

= () +

These elements commute with all u(Ai(2))’s, and it
satisfies the same OPEs as ones of W~ V*1(sly, feubreg )-
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Example 2: X; = Klein sing. of type A

Proposition

(1) W N (sly, faupreg) = DC”(X) 3 an isom of
VOAEs. _
(2) Zhu algebra of D"(X)W is

~ the finite W-algebra U(sly, fsubreg)-

Remark

Again, the description by local coord. gives a free field
realization of D"(X) in D(C) @ V, ,(CN-1).
(Essentially the same as one in [Feigin-Semikhatov])

| A
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Example 2: X; = Klein sing. of type A

The isomorphism W=N*1(sly, fiupreg) — DXV is
compatible with Miura transform:

WM (sl foubreg) — DC”()?), hypertoric VOA

l Miura ‘ Resfg—*w)th@/vfz

V-1(sh) ® V, ,(CN-2) — T((T*PL)™ x CN-2, 5;%)

Proposition

(3) The above diagram commutes.
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Example 3: Xy = Omin({¢1,1V-11)

Qmin({¢y,1N=1}): “generalized minimal nilpotent orbit
closure” [Nagaoka]

It generalizes Example 1 and 2.
l1 = 1: Example 1, N = 2: Example 2

Chiral comoment map

ten(Ai(2)) = oxii(2)ni(2) . — Jxie1(2)y1ivi(2) ; — ci(2)

Hen(Ao(2)) = 3 2x(2)i(2)? + xn(2)yn(2)° — al2)

=2
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Example 3: Xy = Omin({¢1,1V-11)

~

Generators of D"( X)W

E1i(z) = x11(2) - . . x1e,(2) yi(2)
Ei(z) = xi(z)y11(2) - . . y1,(2)

Ej(z) = xi(z)y;(2)
2

Hi(z) = Z xk(2)yik(z); — oxe(2)y2(2);

H(2) = S(2(2)° = (@i (2);

for i £ j > 2. . Combination of W‘gl(s[glﬂ, feubreg )
and L_l(S[N)!?
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@ Representation Theory of D(X)
construction of simple module etc.
@ Symplectic duality vs. “Koszul duality”
T*PN-1 « C?/(Z/NZ), symplectic dual
A~ L_1(5[/\/) — W_N+1(5[N, fsubreg), duality?
© ‘Level deformation” by the same trick as
Chebotarov's transitive vertex algebroid with
twisting by Courant algebroid.
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