Belle II 実験における B⁰→J/ψ K*⁰(→K+π-)の研究

奈良女子大学 M1 藤井美保

2018/10/31 Flavor Physics Workshop

Belle II 実験

SuperKEKB加速器

Belle II で目指す物理

- ▶ B中間子崩壊の精密測定
- ▶ タウのLFV事象探索
- ▶ ハドロンの物理 ・・・

- 右 http://belle2pb.kek.jp/Detector/
- 左 https://www.ipmu.jp/ja/20180323-SuperKEKB-Phase2Start

時間依存CP非保存を測るには

① B⁰→f_{cp}と、B̄⁰→f_{cp}のasymmetryを測定するためには B⁰→f_{cp}(CP固有状態)への崩壊時刻をt_{cp}、 B⁰→f_{tag}(フレーバー固有状態)への崩壊時刻をt_{tag}とした ときの Δ t 分布(=t_{cp} - t_{tag})が必要

→崩壊点を再構成した際の位置分解能の見積もりが正 しいかどうかを判断する

時間依存CP非保存を測るには(続き)

② CP固有状態への崩壊に対して、他方のB中間子(ftag)のフレーバーを決定することが必要

実験データで較正が必要

② CP固有状態への崩壊に対して、他方のB中間子(ftag)のフレーバーを決定することが必要

→フレーバーの同定を間違ってしまう割合 (wrong-tag fraction)を実データから測定する

• Nof(Opposite Flavor)、Nsf(Same Flavor)として

$$\frac{N_{OF}(\Delta t) - N_{SF}(\Delta t)}{N_{OF}(\Delta t) + N_{SF}(\Delta t)} = (1 - 2w)cos(\Delta m \Delta t)$$

を計算することによりWを求める

どの崩壊モードがいいか

→フレーバーの同定を間違ってしまう割合 (wrong-tag fraction)を実データから測定する

 \rightarrow そのためにB $^{0}\rightarrow f_{flv}$ 、 $\bar{B}^{0}\rightarrow \bar{f}_{flv}$ という B 0 と \bar{B}^{0} が明らかに区別できるモードを用いる

解析の手順

- Signal MC sampleを作る
- 再構成してM_{bc}, ΔE 分布を確認
- 崩壊点を再構成する
- ① 崩壊点の情報から △t 分布を見る
 - ・ △t 分布をフィットして、B中間子の寿命を求める
 - →崩壊点を再構成した際の位置分解能の見積もりが正 しいかを判断するのに必要
- ② wrong-tag fraction の測定

Signal MC sample creation

• B⁰ \rightarrow K*⁰(\rightarrow K+ π -)J/ ψ

- ビームバックグラウンドなし 1000 イベント
- ・ビームバックグラウンドあり 1000 イベント を生成した

e+e-の不変質量分布

without photon inclusion 電子と識別されたトラックを使用 with photon inclusion

 $J/\psi \rightarrow e^+e^-$ では電子、陽電子が制動放射により γ を放出することがある $\rightarrow \gamma 04$ 元運動量を足して補正した

e^+e^- , $\mu^+\mu^-$ の不変質量分布

 $J/\psi \rightarrow e^+e^-$ with photon inclusion

 $J/\psi \rightarrow \mu^+\mu^-$

電子と識別されたトラックを使用

μと識別されたトラックを使用

mass window 2.95 < M < 3.15

3.05 < M < 3.15

Κπの不変質量分布

 $K^{*0} \rightarrow K^{+}\pi^{-}$ K、 π と識別されたトラックを使用

mass window 0.817 < M < 0.967

mass, vertex constraint fitの効果

with mass and vertex fit

- ・ J/*ψ*→*μ*+*μ* or e+e- モードとK+*π* (and C.C.)を使って再構成した
- J/ $\psi \rightarrow \mu^+ \mu^-$ or e+e- にはMass and vertex fit、 K*0 \rightarrow K+ π^- にはvertex fit を用いた
- 右の分布では△Eの分解能が改善されていることがわかる

事象選別条件のまとめ

- muon, electron 確率 > 0.1, pion, kaon 確率 > 0.6
- 2.95 < Mee < 3.15
 - 50mrad以内に見つかったphotonは加える
 - Mass & vertex constraint fit あり
- $3.05 < M_{\mu\mu} < 3.15$
 - Mass & vertex constraint fit あり
- $0.817 < M_{K\pi} < 0.967$
 - vertex constraint fit あり
- $-0.03 < \Delta E < 0.03$

Mbc, ΔE分布 (BGxO)

Mbc, ΔE分布 (BGx1)

BGx0 の時よりも再構成されたB⁰の数は <u>少なくなった</u> Efficiency 31.8%

$\Delta Z_{residual}$, $\Delta t_{residual}$ 分布 (BGx0)

$$\sigma = 51 \pm 4 \,\mu\text{m}$$

$$\sigma = 0.67 \pm 0.03 \text{ ps}$$

B2Tip Reportで報告されている値よりも小さい

まとめと今後

- B⁰→J/ψK*⁰(→K+π-)のsignal MC sample を作り、再構成して正しい位置にピークがあることを確認した
- ビームバックグラウンドなしではefficiencyは36.1%、 ビームバックグラウンドありでは31.8%だった
- B2Tip Reportで報告されているよりも Δtの分解能が良い
 - →さらに高統計のシミュレーションデータで チェックする予定

Back up

Mbc, ΔE分布 (BGxO)

正しく再構成できている Efficiency 36.1%

5.24

5.26

5.27

 $M_{bc}[GeV/c^2]$

Flavor Physics Workshop

Mbc, ΔE分布 (BGx1)

BGx0 の時よりも再構成されたB⁰の数は 少なくなった Efficiency 31.8%

Vertex of reconstructed side and tag side (BGx0)

- $e^{+}(\mu^{+})$, $e^{-}(\mu^{-})$, K^{+} , π^{-} の4本のトラックを使ってvertexを再構成した $\sigma=14\pm2~\mu\mathrm{m}$
- Tag sideでは $\sigma = 34 \pm 3 \; \mu \, \mathrm{m}$

Vertex of reconstructed side and tag side (BGx1)

- reconstructed sideでは $\sigma = 15 \pm 2 \mu m$
- tag sideでは $\sigma = 29 \pm 3 \mu m$

ΔZresidual, Δtresidual 分布 (BGx1)

BGx0、BGx1共にB2Tip Reportで報告されている値よりも小さい
→原因調査中

	Zrec_residual	Zgen_residual	ΔZ_residual	∆t_residual
σ (BGx0)	14 ± 2 μm	34 ± 3 μm	51 ± 4 μm	0.67 ± 0.03 ps
σ (BGx1)	15 ± 2 μm	29 ± 3 μm	40 ± 4 μm	0.57 ± 0.04 ps

- BGx0よりもBGx1の σ の方が値が小さい
 - →原因調査中・・・高統計のSignal MC sampleを使う 新しいリリースを使う