

ILCにおけるトップクォークとゲージ粒子Z/γの 異常結合探索手法の開発研究

東北大学 素粒子実験研究室

佐藤 瑶

ILC (International Linear Collider)とは

トップクォークとは

トップクォークと Z/γ の結合

全角度情報を用いた新たな探索手法

本研究の目的

ILC (International Linear Collider)とは

電子陽電子衝突の線型加速器

設計値(TDR, 2013):

- $\sqrt{s} = 250-500 \text{ GeV} \rightarrow 1 \text{ TeV}$
- 全長: 31 km → 50 km
- ビームの偏極を操作可能

測定器:ILD, SiD

物理目的:

- ヒッグス粒子とトップクォークの 精密測定を通じた新物理探索
- 新粒子探索

トップクォークとは

第三世代のup typeのクォーク

電荷	質量	崩壊幅	寿命	
+2/3 e	~173 GeV	~1.5 GeV	~10 ⁻²⁵ s	
		ほぼ100ハドロン	% bW に崩壊 /化しない!	

<u>トップクォークとZ/γの結合</u>

トップクォークは他のクォーク・レプトンより非常に重い

→電弱対称性破れの物理と深く関係していると予想される

 \rightarrow トップクォークと Z/γ の結合(ttZ/γ 結合)に新物理の効果が現れる!

全角度情報を用いた新たな探索手法

先行研究では二つの観測量

- σ: 全断面積
- A_{FB}:トップの前後非対称度
 - $e^-e^+ \rightarrow t\bar{t}$ 過程に関連した観測量

崩壊過程(*t* → *bW*⁺ → *bf f*)も *ttZ/γ*結合に関する情報を持っている トップはハドロン化する前に崩壊 崩壊粒子の角度分布はトップのスピン に依存する

全角度情報を用いることでより高精度の測定が期待できる!

本研究の目的

目的

ILD検出器のフルシミュレーション研究によって、

全角度情報を用いたトップクォークとZ/γの異常結合探索手法を開発する

本研究のセットアップ

シミュレーションのセットアップ

信号事象: Di-leptonic 終状態

シミュレーションのセットアップ

イベント生成: WHIZARD, Pythia 検出器シミュレーション: Mokka, Marlin (TDR, ILD)

シミュレーションのパラメータは TDR (2013)に準拠

重心系エネルギー	\sqrt{S}	500 GeV
ビーム偏極	$(P_{e^{-}}, P_{e^{+}})$	(-0.8, +0.3) / (+0.8, -0.3)
積分ルミノシティ	L	250 fb ⁻¹ / 250 fb ⁻¹
トップクォークの質量	m_t	174 GeV
その他の物理パラメータ		SM-LO

信号事象: Di-leptonic 終状態

信号事象:
$$e^-e^+ \rightarrow t\bar{t} \rightarrow bW^+\bar{b}W^- \rightarrow bl^+\nu\bar{b}l^-\nu$$

二つのW粒子が lv に崩壊する過程(10%程度)

こつのニュートリノを含むため再構成が難しい

今 Full simulation による初の解析

荷電レプトンの角度情報を用いることができる

主な背景事象

$$e^{-e^{+}} \rightarrow bl^{+}v\bar{b}l^{-}v(tbW^{*}など、干渉の効果を考慮)$$

$$e^{-e^{+}} \rightarrow q\bar{q}l^{-}l^{+}(\pm [ce^{-e^{+}} \rightarrow ZZ \rightarrow q\bar{q}l^{-}l^{+})]$$

$$e^{-e^{+}} \rightarrow blvbqq'(\pm [ce^{-e^{+}} \rightarrow t\bar{t} \rightarrow blvbqq')$$

Single top production

全角度分布を用いる場合の観測量

解析手法

最適な観測量の導入

Binned FitによるFの測定

先行研究との比較

全角度分布を用いる場合の観測量

トップクォークの角度分布のみの場合
θ_t: e⁻e⁺静止系の t の角度
|M(cos θ_t)|² = A(1 + cos θ_t)² + B(1 − cos θ_t)² + C sin² θ_t
→ 観測量は最大3つ存在する (A, B, C)

全角度情報の場合

 $\theta_t: e^-e^+$ 静止系の t の角度 $\theta_{W^{\pm}}, \phi_{W^{\pm}}: t(t)$ 静止系の W^{\pm} の角度 $\theta_{l^{\pm}}, \phi_{l^{\pm}}: W^{\pm}$ 静止系の l^{\pm} の角度 $|M(\cos \theta_t, \cos \theta_{W^+}, \phi_{W^+}, \cos \theta_{W^-}, \phi_{W^-}, \cos \theta_{l^+}, \phi_{l^+}, \cos \theta_{l^-}, \phi_{l^-})|^2$ **→膨大な観測量が得られる!しかしどうやって扱えば良い?**

信号事象の角度分布は理想的には以下の式に従う。

 $\left|M(\cos\theta_{t},\cos\theta_{W^{+}},\phi_{W^{+}},\cos\theta_{W^{-}},\phi_{W^{-}},\cos\theta_{l^{+}},\phi_{l^{+}},\cos\theta_{l^{-}},\phi_{l^{-}};F^{Z/\gamma})\right|^{2}$

解析手法の候補

|*M*|²をPDFとしてUnbinned fit
 →実験の効果(背景事象・検出器等)によってPDFと合わない ×
 →新しくPDFを定義する必要がある ▲

信号事象の角度分布は理想的には以下の式に従う。

 $\left|M(\cos\theta_{t},\cos\theta_{W^{+}},\phi_{W^{+}},\cos\theta_{W^{-}},\phi_{W^{-}},\cos\theta_{l^{+}},\phi_{l^{+}},\cos\theta_{l^{-}},\phi_{l^{-}};\underline{F^{Z/\gamma}})\right|^{2}$

解析手法の候補

- |M|²をPDFとしてUnbinned fit
 →実験の効果(背景事象・検出器等)によってPDFと合わない ×
 →新しくPDFを定義する必要がある ▲
- 2. 9次元の分布(cos θ_t, cos θ_{W⁺}, φ_{W⁺}, cos θ_{W⁻}, φ_{W⁻}, cos θ_{l⁺}, φ_{l⁺}, cos θ_{l⁻}, φ_{l⁻})をBinned fit
 →高い測定精度のためには大量のビンが必要(2分割でも2⁹個)

信号事象の角度分布は理想的には以下の式に従う。

 $\left|M(\cos\theta_{t},\cos\theta_{W^{+}},\phi_{W^{+}},\cos\theta_{W^{-}},\phi_{W^{-}},\cos\theta_{l^{+}},\phi_{l^{+}},\cos\theta_{l^{-}},\phi_{l^{-}};\underline{F^{Z/\gamma}})\right|^{2}$

解析手法の候補

- |*M*|²をPDFとしてUnbinned fit
 →実験の効果(背景事象・検出器等)によってPDFと合わない ×
 →新しくPDFを定義する必要がある ▲
- 2. 9次元の分布(cos θ_t, cos θ_{W⁺}, φ_{W⁺}, cos θ_{W⁻}, φ_{W⁻}, cos θ_{l⁺}, φ_{l⁺}, cos θ_{l⁻}, φ_{l⁻})をBinned fit
 →高い測定精度のためには大量のビンが必要(2分割でも2⁹個)
- 3.1次元の分布をBinned fit

→実験の効果を取り入れるのも容易

 \rightarrow どの分布を使うかが重要 (cos θ_t なら先行研究と同じ)

全角度情報を含んだ1次元の分布を導入する!

最適な観測量の導入

確率振幅を $F^{Z/\gamma}$ で展開する

1. の方法(Unbinned fit)の結果はωのみで表される(1パラメータの場合)

 $\delta F_i \simeq \frac{\overline{\omega}_i - \overline{\omega}_i^{SM}}{\overline{\omega}_i^2} \pm \frac{1}{\sqrt{N\overline{\omega}_i^2}}$ (*a*はωの平均、*a*SMは標準模型での期待値)

ω_i は全角度情報を F_i の測定に最適に変換した観測量

Binned FitによるFの測定

各 F_i について1パラメータフィット 以下の χ^2 を最小にする F_i を求める。

$$\chi^{2}(\delta F_{i}) = \sum_{b=1}^{N_{bin}} \left(\frac{n_{b}^{\text{Data}} - n_{b}^{\text{Sim.}}(\delta F_{i})}{\sqrt{n_{b}^{\text{Data}}}} \right)^{2}$$
$$n_{b}^{\text{Data}} : b \oplus \oplus \oplus \mathbb{O} \lor \mathcal{O} \lor$$

結果: $\delta F_{1V}^{\gamma} = 0.0024 \pm 0.0034 (CL = 80\%)$

- 測定結果が入力値に一致
- フィットに成功していることを確認

先行研究との比較

	This study	Previous (1)	Previous (1)	先行研究と本研究では				
	σ_{stat}	$\sigma_{stat} imes \sqrt{6}$	σ_{stat}	 信号事象数に6倍程度の美がある				
F_{1V}^{γ}	±0.0034	±0.0049	± 0.002					
F_{1V}^Z	±0.0061	±0.0073	± 0.003	■ 信号事家数の差を考慮すると、 別回時度を見上れる。499(10)				
F_{1A}^{γ}	± 0.0082			測定精度を最大10-40%程度				
F_{1A}^Z	±0.0133	±0.0171	± 0.007	改善する可能性				
F_{2V}^{γ}	±0.0028	±0.0024	± 0.001	本手法を他の終状態に応用す				
F_{2V}^Z	± 0.0049	±0.0049	± 0.002	ることで、精度の向上が期待				
				出来る。				
	This study	Previous (2)	Previous (2)	(*) 先行研究は、一部マルチパラメー				
	σ_{stat}	$\sigma_{stat} \times \sqrt{6}$	σ_{stat}	クフィットの結果 ただし 相関に				
ReF_{2A}^{γ}	± 0.012	± 0.012	± 0.005	よろ統計誤差への影響は10%以下で				
ReF_{2A}^Z	± 0.018	± 0.017	± 0.007	ある。				
ImF_{2A}^{γ}	±0.011	±0.015	± 0.006	(1) Eur Phys I C75 (2015) no 10 512				
ImF_{2A}^Z	±0.019	±0.024	± 0.010	(2) Eur.Phys.J. C78 (2018) no.2, 155				

目的 ILD検出器のフルシミュレーション解析による 全角度情報を用いた*ttZ*/γ異常結合探索手法の開発

力学的再構成によってDi-leptonic過程の全終状態を再構成
 ω分布による全角度情報を用いた、形状因子Fの測定手法を開発
 先行研究の測定精度を最大10-40%程度改善する可能性

今後の展望

他の終状態に本手法の応用

▲ 複数の形状因子Fのマルチパラメータフィット

Backup

ILC (International Linear Collider)

TDR (Technical Design Report), 2013

- $\sqrt{s} = 250-500 \text{ GeV} \rightarrow 1 \text{ TeV}$
- Length : 31 km \rightarrow 50 km

ILC250 (Staging Plan), 2017

- $\sqrt{s} = 250 \text{ GeV}$
- Length : 20 km

Physics Motivation

Precise measurement of Higgsboson and Top quark

New physics search

ILD (International Large Detector)

The ILD is composed of

• Vertex detector

• TPC

- ECAL
- HCAL
- Yoke / Muon detector
- Forward detectors

The reconstruction process uses all aspects of the ILC

Signal Reconstruction

Reconstruction process Algorithm of the kinematical reconstruction Combination of mu and b-jet Event selection

Reconstruction Process

Reconstruct all final state particles, $b\bar{b}\mu^{-}\mu^{+}\nu\bar{\nu}$.

1. Selection of μ^+ and μ^-

 μ^{-}, μ^{+} are isolated from other particles

Extract isolated muons as final state muons

Isolated muon

Muon included in a jet

2. Jet clustering and b-tagging

Cluster jet particles corresponding to b, \overline{b}

B, *D* meson moves ~100 μ m before the decay

Assess the "b-likeness" from the vertex information (such as # of vtx. and distance between IP and vtx.)

Reconstruction Process

3. Kinematical Reconstruction

 $\nu, \bar{\nu}$ are not detectable at the ILD detector.

To recover them, impose the following constraints

- Initial state constraints : $E_{\text{total}} = 500 \text{ GeV}$, $\vec{P}_{\text{total}} = \vec{0} \text{ GeV}$
- Mass constraints : $m_{t,\bar{t}} = 174 \text{ GeV}, m_{W^{\pm}} = 80.4 \text{ GeV}$

 γ of the ISR/Beamstrahlung deteriorates the initial state condition. Assume the γ is along the beam direction (z-axis).

Unknowns $\vec{P}_{\nu}, \vec{P}_{\overline{\nu}}, P_{\gamma,z}$: 7

Algorithm of the Kinematical Reconstruction

Introduce 4 free parameters : \vec{P}_{ν} , $P_{\gamma,z}$

 $\vec{P}_{\overline{\nu}}$ can be computed using the initial momentum constraints

$$\vec{P}_{\overline{\nu}} = -\vec{P}_{\text{vis.}} - \vec{P}_{\nu} - \vec{P}_{\gamma}, \qquad \left(\vec{P}_{\text{vis.}} = \vec{P}_b + \vec{P}_{\bar{b}} + \vec{P}_{\mu^+} + \vec{P}_{\mu^-}\right)$$

Define the likelihood function :

 $L_0(\vec{P}_{\nu}, P_{\gamma, z}) = BW(m_t)BW(m_{\bar{t}})BW(m_{W^+})BW(m_{W^-})Gaus(E_{\text{total}})$

To correct the energy resolution of b-jets, add 2 parameters, E_b , $E_{\bar{b}}$, with the resolution functions to L_0 :

$$L(\vec{P}_{\nu}, P_{\gamma,z}, E_b, E_{\bar{b}}) = L_0 \times Res(E_b, E_b^{\text{meas.}})Res(E_{\bar{b}}, E_{\bar{b}}^{\text{meas.}})$$

Define $q(\vec{P}_{\nu}, P_{\gamma,z}, E_b, E_{\bar{b}}) = -2 \log L + \text{Const.}$

(scaled as the minimum of each component ($BW(m_t)$, etc) is equal to 0)

Combination of μ and b-jet

Choice of a combination of μ and b-jet

There are two candidates for the combination

Select one having smaller q, defined as q_{min} Fraction of correct combination is ~83%

$\cos \theta_t$ distribution (Rec vs. MC Truth)

- Correct combination: OK !
- Miss combination: Disagree with the MC truth.

Need to estimate an effect of the miss combination for the analysis.

Event Selection

Quality cut :

 q_{\min} means the quality of reconstruction. Useful to suppress the backgrounds.

Criteria are optimized for the significance,

$$S = \frac{N_{\rm signal}}{\sqrt{N_{\rm signal} + N_{\rm background}}}$$

Left Polarization Cut Criteria	Signal bbμμνν	tt	except for <i>tt</i>	All bkg.	qqll	bbllvv
No cut	2837			8410633	91478	23312
$N_{\mu^-} = 1 \ \& \ N_{\mu^+} = 1$	2618			327488	13827	387
b-tag cut	2489	2215	273	4143	2943	363
Quality cut ($q_{\min} < 11.5$)	2396	2103	195	624	258	313

(*) Separate signals into $t\bar{t}$ and the other process from WHIZARD information

Isolated muon finder

Energy ratio between μ and a cone

 $R = E_{\mu}/E_{cone}$ is a quantity to evaluate how isolated the muon is.

 $(E_{cone}: total energy of particles in the cone)$

 μ from W boson is more isolated than other μ

Isolated muon finder

Quantities

 $R = E_{\mu}/E_{cone}, E_{cone,neutral}, E_{cone,charged}$ $\cos \theta = \frac{P_{\mu} \cdot P_{cone}}{|P_{\mu}| \times |P_{cone}|}, \ \Delta E_{ECAL}, \Delta E_{Yoke}, \dots$

Jet clustering

General strategy

Merge a pair of particles whose "**Distance**" is the smallest until a condition meets "**Criteria**"

"Distance"

Durham algorithm : $Y_{ij} = 2 \frac{\min\left[E_i^2, E_j^2\right](1 - \cos \theta_{ij})}{E_{vis}^2}$, θ_{ij} : angle between P_i and P_j k_t algorithm : $d_{ij} = \min\left[p_{T_i^2}, p_{t_j^2}\right] \frac{R_{ij}}{R}$ or $d_{iB} = p_{t_i^2}, R_{ij}^2 = (\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2$ η : pseudo rapidity, ϕ azimuthal angle

"Criteria"

- Number of remaining particles is equal to N_{Req}
- The smallest distance is smaller than D_{Req}

$\gamma\gamma \rightarrow$ hadrons rejection

b, \overline{b} are reconstructed from the rest of particles with LCFIPlus

Strongly peaked at very forward region by mistake

 $\gamma\gamma \rightarrow$ hadrons are emitted along the beam direction

$\gamma\gamma \rightarrow$ hadrons rejection

Eliminate particles close to beam direction rather than other particles with kt algorithm.

Good agreement between Rec and MC

b-tagging with LCFIPlus

b-tag is TMVA output indicating "b-likeness" of a jet obtained by the LCFIPlus(*).

- b-tag_{Max}: the largest b-tag
- b-tag_{2nd} : the 2nd largest b-tag

Signal has large b-tag_{Max}

Many of bkg. have small b-tag_{Max} and b-tag_{2nd}

 $b - tag_{Max} > 0.5 \text{ or } b - tag_{2nd} > 0.3$

(*) A software package of Marlin for the multi-jet analysis.

Flow of Reconstruction

Kinematical Reconstruction

$$BW(x;m,\Gamma) \propto \frac{1}{1 + \left(\frac{x^2 - m^2}{m\Gamma}\right)^2}$$
$$Gaus(x;\mu,\sigma) \propto \exp\left[-\left(\frac{x - \mu}{\sqrt{2}\sigma}\right)^2\right]$$

Detail definition of L_0 is

$$L_0(\vec{P}_{\nu}, P_{\gamma,Z}) = BW(m_t; 174,5)BW(m_{\bar{t}}; 174,5)$$

$$\cdot BW(m_{W^+}; 80.4,5)BW(m_{W^-}; 80.4,5)Gaus(E_{total}; 500,0.39)$$

Larger value for Γ than theoretical value is set because of detector effects

 σ is caused by the Beam energy spread.

Energy resolution of b-jet

Estimate the energy resolution of b-jet with the following $Res(E_b, E_b^{meas.})$; $Res(E_b, E_b^{meas.}) = (1 - f)CB(\Delta E_b; \alpha, n, \mu_{CB}, \sigma_{CB}) + f * Gaus(\Delta E_b; \mu_{Gaus}, \sigma_{Gaus})$

Divide into 3 regions ; $|\cos \theta| = (0, 0.9), (0.9, 0.95), (0.95, 1)$

Crystal Ball function

Crystal Ball function consists of a Gaussian core portion and power-law tail.

$$CB(x;\alpha,n,\bar{x},\sigma) = N \cdot \begin{cases} \exp\left(-\frac{(x-\bar{x})^2}{2\sigma^2}\right) & \frac{x-\bar{x}}{\sigma} > -\alpha \\ A \cdot \left(B - \frac{x-\bar{x}}{\sigma}\right)^{-n} & \frac{x-\bar{x}}{\sigma} \le -\alpha \end{cases}$$

$$A = \left(\frac{n}{|\alpha|}\right)^{n} \cdot \exp\left(-\frac{|\alpha|^{2}}{2}\right)$$
$$B = \frac{n}{|\alpha|} - |\alpha|$$
$$N = \frac{1}{\sigma(C+D)}$$
$$C = \frac{n}{|\alpha|} \cdot \frac{1}{n-1} \cdot \exp\left(-\frac{|\alpha|^{2}}{2}\right)$$
$$D = \sqrt{\frac{\pi}{2}} \left(1 + \operatorname{erf}\left(\frac{|\alpha|}{\sqrt{2}}\right)\right)$$

Results of Reconstruction

Considerable migration occurs in the Left polarization case

Some events pass from forward to backward because of the miss combination of μ and b-jet.

Dependence from the beam polarization

$\cos \theta_t$ distribution (Left polarization)

Left polarization

Reconstructed distribution of miss combination is very different from the MC truth.

$\cos \theta_t$ distribution (Right polarization)

Right polarization

Similar distribution can be reconstructed even when the miss combination is selected.

Dependence from the beam polarization

 $\cos \theta_b \simeq 1 \rightarrow \text{b-jets are energetic}$ **> Migration effect is strong**

Peak at $\cos \theta_t \simeq 1 \& \cos \theta_b \simeq 1$

 \rightarrow Migration is asymmetry

 $\cos \theta_t$ vs. $\cos \theta_b$ (Right polarization)

Peak at $\cos \theta_t \simeq 1 \& \cos \theta_b \simeq -1$

 \rightarrow Migration is symmetry

Cut table (Right Polarization)

Right Polarization Cut Criteria	Signal bbμμνν	tt	except for tt	All bkg.	qqll	bbllvv
No cut	1261			3751175	46344	10117
$N_{\mu^-} = 1 \ \& \ N_{\mu^+} = 1$	1170			230260	6987	189
b-tag cut	1097	1046	79	2118	1468	181
Quality cut ($q_{\rm min}$ < 12.5)	1046	976	70	297	132	151

Criteria of $t\bar{t}$:

$$\left|M_{b\mu^{+}\nu} - 174\right| < 15 \ \& \left|M_{\bar{b}\mu^{-}\bar{\nu}} - 174\right| < 15$$

J. Fuster et al. Eur. Phys. J. C 75, 223 (2015)

The amplitude of the di-leptonic process

The amplitude of the di-leptonic process is a function of 9 angles.

 $|M|^{2}(\cos\theta_{t},\cos\theta_{W^{+}},\phi_{W^{+}},\cos\theta_{W^{-}},\phi_{W^{-}},\cos\theta_{l^{+}},\phi_{l^{+}},\cos\theta_{l^{-}},\phi_{l^{-}};F)$

It is difficult to handle the 9-dimention phase space

 \rightarrow Expand the amplitude in the form factors, *F*

Based on the unbinned likelihood method. The likelihood function is computed from the amplitude.

- \rightarrow Full kinematics are used = The most sensitive method in principle.
- Fit results are almost consistent with SM values.
 - ~1.5 σ biases are observed for several form factors

$$\begin{split} & \delta \tilde{F}_{1V,\text{fit}}^{\gamma} \\ & \delta \tilde{F}_{1A,\text{fit}}^{Z} \\ & \delta \tilde{F}_{1A,\text{fit}}^{\gamma} \\ & \delta \tilde{F}_{1A,\text{fit}}^{Z} \\ & \delta \tilde{F}_{2V,\text{fit}}^{Z} \\ & \delta \tilde{F}_{2V,\text{fit}}^{Z} \\ & \delta \tilde{F}_{2V,\text{fit}}^{Z} \\ & Re \ \delta \tilde{F}_{2A,\text{fit}}^{Z} \\ & Re \ \delta \tilde{F}_{2A,\text{fit}}^{Z$$

Correlation coefficient for \tilde{F}

	(+1.000)	-0.141	+0.027	+0.085	+0.598	-0.067	-0.026	-0.018	-0.006	-0.012
	-0.141	+1.000	+0.093	+0.066	-0.028	+0.606	-0.033	-0.065	+0.002	+0.012
	+0.027	+0.093	+1.000	-0.082	+0.012	+0.034	-0.038	-0.096	-0.024	-0.013
	+0.085	+0.066	-0.082	+1.000	+0.003	+0.033	-0.075	-0.040	+0.005	-0.027
$V_C =$	+0.598	-0.028	+0.012	+0.003	+1.000	-0.107	+0.037	-0.038	-0.021	+0.019
	-0.067	+0.606	+0.034	+0.033	-0.107	+1.000	-0.064	+0.006	+0.013	-0.020
	-0.026	-0.033	-0.038	-0.075	+0.037	-0.064	+1.000	-0.103	-0.013	+0.045
	-0.018	-0.065	-0.096	-0.040	-0.038	+0.006	-0.103	+1.000	+0.047	+0.004
	-0.006	+0.002	-0.024	+0.005	-0.021	+0.013	-0.013	+0.047	+1.000	-0.074
	(-0.012)	+0.012	-0.013	-0.027	+0.019	-0.020	+0.045	+0.004	-0.074	+1.000

- Correlation coefficient between $\tilde{F}_{1V}^{Z/\gamma}$ and $\tilde{F}_{2V}^{Z/\gamma}$ is about 0.6
- The others are less than 0.15

Correlation coefficient for F

	+1.000	-0.356	-0.140	+0.276	-0.970	+0.313	-0.049	+0.065	-0.089	+0.097
	-0.356	+1.000	+0.173	-0.215	+0.281	-0.971	+0.053	-0.038	+0.113	-0.066
	-0.140	+0.173	+1.000	-0.273	+0.113	-0.133	+0.038	-0.045	+0.051	-0.009
	+0.276	-0.215	-0.273	+1.000	-0.233	+0.188	-0.055	+0.037	-0.033	+0.051
$V_{\alpha} =$	-0.970	+0.281	+0.113	-0.233	+1.000	-0.254	+0.046	-0.063	+0.099	-0.104
VC -	+0.313	-0.971	-0.133	+0.188	-0.254	+1.000	-0.047	+0.040	-0.120	+0.085
	-0.049	+0.053	+0.038	-0.055	+0.046	-0.047	+1.000	-0.287	+0.036	-0.036
	+0.065	-0.038	-0.045	+0.037	-0.063	+0.040	-0.287	+1.000	-0.059	+0.024
	-0.089	+0.113	+0.051	-0.033	+0.099	-0.120	+0.036	-0.059	+1.000	-0.229
	+0.097	-0.066	-0.009	+0.051	-0.104	+0.085	-0.036	+0.024	-0.229	+1.000/

- Correlation coefficient between $F_{1V}^{Z/\gamma}$ and $F_{2V}^{Z/\gamma}$ is about 0.97
- The others are less than 0.36

Goodness of fit for the MEM

Expectation value of ω when the fit results are assigned should be equal to mean of reconstructed ω distribution

$$\chi^{2}_{\text{GoF},k}(\delta F_{\text{fit}}) = \frac{(\langle \omega_{k} \rangle - \Omega_{k}(\delta F_{\text{fit}}))^{2}}{(\langle \omega_{k}^{2} \rangle - \langle \omega_{k} \rangle^{2})/N_{data}}$$
$$\tilde{\chi}^{2}_{\text{GoF},kl}(\delta F_{\text{fit}}) = \frac{(\langle \widetilde{\omega}_{kl} \rangle - \widetilde{\Omega}_{kl}(\delta F_{\text{fit}}))^{2}}{(\langle \widetilde{\omega}_{kl}^{2} \rangle - \langle \widetilde{\omega}_{kl} \rangle^{2})/N_{data}}$$

Some χ^2_{GoF} have large value (6~10). → Goodness of fit for the MEM is bad.

Reweighting (Template-like) Technique

Binned likelihood method :
$$\chi^2(\delta F) = \sum_{i=1}^{N_{bin}} \left(\frac{n_i^{\text{Data}} - n_i^{\text{Sim.}}(\delta F)}{\sqrt{n_i^{\text{Data}}}} \right)^2$$

 $n_i^{\text{Sim.}}(\delta F)$ is obtained from the large full simulation

Reweighting technique :

Produce a sample using SM value, then change the weight of events.

$$n_{i}^{\text{Sim.}}(\delta F) = n_{i}^{\text{Sim.,sig}}(\delta F) + n_{i}^{\text{Sim.,bkg}}$$
$$= n_{i}^{\text{Sim.,sig}}(0)(1\langle\omega\rangle_{i}\delta F + \langle\widetilde{\omega}\rangle_{i}\delta F^{2}) + n_{i}^{\text{Sim.,bkg}}$$
$$\simeq n_{i}^{\text{Sim.,sig}}(0)(1 + \langle\omega\rangle_{i}\delta F) + n_{i}^{\text{Sim.,bkg}}$$

Template technique : Produce many samples using different parameters

Overestimate of goodness of fit

We don't have enough statistics for the background events for now.

$$\chi^{2}(\delta F) = \sum_{i=1}^{N_{bin}} \left(\frac{n_{i}^{\text{Data}} - n_{i}^{\text{Sim.}}(\delta F)}{\sqrt{n_{i}^{\text{Data}}}} \right)^{2} \to \sum_{i=1}^{N_{bin}} \left(\frac{n_{i}^{\text{Data,Sig.}} - n_{i}^{\text{Sim.,Sig.}}(\delta F)}{\sqrt{n_{i}^{\text{Data}}}} \right)^{2}$$

When $n_i^{\text{Data,Sig.}} = \alpha n_i^{\text{Data}} (\alpha < 1)$

$$\sum_{i=1}^{N_{bin}} \left(\frac{n_i^{\text{Data,Sig.}} - n_i^{\text{Sim.,Sig.}}(\delta F)}{\sqrt{n_i^{\text{Data}}}} \right)^2 = \alpha \sum_{i=1}^{N_{bin}} \left(\frac{n_i^{\text{Data,Sig.}} - n_i^{\text{Sim.,Sig.}}(\delta F)}{\sqrt{n_i^{\text{Data,Sig}}}} \right)^2 \\ \equiv \alpha \chi_{\text{Sig}}^2$$

min $[\chi^2_{Sig}]$ obeys chi-square distribution of $n. d. f. = N_{bin} - N_{para}$ $\rightarrow \chi^2(\delta F)$ may be $1/\alpha$ times larger if backgrounds are included in $\chi^2(\delta F)$