

2018 Nov. 1st

強い相互作用について

わかっていること; 非可換群SU(3)ゲージ対称性、漸近的自由という性質を持つ。 結合 α_s (M_Z²)=0.12、runningあり、高エネルギーでは摂動論が有効。 核子はvalence quarkに加え、sea quarkとgluonが内部を満たす。2

クォークは単独では出てこない

構成子が

クォーク・反クォークの二体:メソン と クォーク三体:バリオン その質量はヒッグス機構がクォークに与えたもともとの(裸の)質量に、 カイラル対称性の自発的破れによる"着膨れ"ぶんが加わっている。

他の配位のもの

・ QCDは"有効自由度"が違うものを禁止していない。

- 数十年にわたり、メソンとバリオンで説明できてきた。
- 非摂動論的領域で、まだ我々が知らないことがある。

Belle での "XYZ" sensations

何がこれを可能にしたか

この "XYZ" 発見の経験では、 以下の二つの点が重要であった。

- ・ 生成反応のバラエティがある。
 - Each physics process has preferable states.
 - Interplay among several approaches is effective.
- いろいろな崩壊モードを検出する能力がある。
 - Each hypothesis; other decay modes, partner states.
 - Partner states have specific decay modes.

生成反応のバラエティ

Allowed/favored quantum numbers are different depending on production processes.

大立体角高分解能検出器が必要

layers)

$\ensuremath{\mathsf{K}_{\mathsf{L}}}$ and muon detector:

Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps, inner 2 barrel

8

EM Calorimeter:

CsI(TI), waveform sampling (baseline)

electron (7GeV) Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

Central Drift Chamber

He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

Particle Identification

Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

positron (4GeV) Better or same performance under × 20 beam

構成要素としてcやbを含むと

・ 軽いフレーバー(u,d,s)たちは混ざるが

例:
$$\begin{aligned} f' &= \psi_8 \, \cos \theta - \psi_1 \, \sin \theta \\ f &= \psi_8 \, \sin \theta + \psi_1 \, \cos \theta \quad \to \eta \end{aligned} \qquad \qquad \psi_8 &= \frac{1}{\sqrt{6}} (u\bar{u} + d\bar{d} - 2s\bar{s}) \\ \psi_1 &= \frac{1}{\sqrt{3}} (u\bar{u} + d\bar{d} + s\bar{s}) \end{aligned}$$

最初の衝撃:X(3872)

パートナー状態はこれまで未発見

No signature for

•Charged partner in J/ $\psi \pi^+\pi^0$. \rightarrow most likely, isospin=0.

•C=-1 partner in J/ $\psi \eta$ and $\chi_{c1} \gamma$. \rightarrow disfavor tetraquark hypothesis.

メソン分子とccの混合か

S.Takeuchi, K.Shimizu and M.Takizawa, arXiv:1408.0973

DD* component is coupled with the same J^{PC} cc, $\chi_{c1}(2P)$ (unseen). → can explain Br(X→D⁰D^{*0})/Br(X→J/ $\psi \pi^{+}\pi^{-}$) is about 10. → pure molecule is too fragile to be produced in Tevatron/LHC. → another $\chi_{c1}(2P)$ dominant state would become broad. これまでに得て積み上げた知見と無矛盾。 こうした描像に達したことは当該分野の進歩といえる。 12

するとパートナー状態はどんなもの?

If X(3872) is admixture of molecule and $\chi_{c1}(2P)$, its C-odd partner, J^{PC}=1⁺⁻ state, is

この研究に着手しました→皆吉talkを聞いてください。

13

生成反応のバラエティ: Y(3940)=X(3915)

二つの電荷ありbb似状態 Z_b(10610)⁺ and Z_b(10650)⁺

$Z_b(10610)^{\pm} \rightarrow \overline{BB}^*, Z_b(10650)^{\pm} \rightarrow \overline{B^*B}^*$

Decays to Υ and h_b can co-exist. Signature in $\overline{B}^*B^{(*)}$ partial recon. seen.

J^P=1⁺ is supported by Dalitz analysis. PRD91,072003(2015).

中性パートナーも発見された

 Partners may decay into χ_{bJ} (PRD86,014004(2012)).

$$- Z_b \rightarrow \chi_{bJ} \pi, Z_{b0} \rightarrow \chi_{bJ} \gamma$$

Br($\chi_{bJ} \rightarrow \Upsilon(1,2,3S)\gamma$) and γ efficiency are multiplied, signal yield may be lower one order of magnitude.

Higher statistics needed.

$Z_c(3900)^{\pm}$ at Y(4260) \rightarrow J/ $\psi \pi^+ \pi^-$

これらの発見から学んだこと

- The decays of J^{PC}=1⁻ states above open charm/bottom threshold contain charged state(s).
 – Y(4260) → Z_c(3900)⁺π⁻
 - − Υ (10860)→ Z_b (10610)⁺ π ⁻ and Z_b (10650)⁺ π ⁻
- Near the meson-meson threshold, molecular state plays an important role.

 HAL QCD simulation shows Z_c(3900)[±] is likely to be a "threshold cusp". PRL117,242001(2016)

Z(4430)⁺ in ψ (2S) π^{\pm} final state

LHCbの統計ではこんなことも

Such approach will be possible to study other states with Belle II statistics only.

quarkonium(-like) 状態のまとめ

- 閾値付近ではメソン分子が重要な役割を果たす。
 - X(3872) : $D^0 \overline{D^{*0}}$ and mixing with $\chi_{c1}(2P)$.

 $- Z_{b}(10610)^{+}$: B B^{*}, $Z_{b}(10650)^{+}$: B^{*} B^{*}

- パートナー状態が見出された例は限られている。 Z_b(10610)⁰ (and Z(3900)⁰ in CLEO) so far.
- パートナー状態の探索と発見はもっと統計が必要。
 予想される崩壊モードの特性ゆえ
- Argand diagram approach は Belle II の統計が必要。

チャームバリオンと"di-quark"

- Thought to be a good place to check if "di-quarks" is behaving as a good degree of freedom to form hadrons.
- One of the constituent quark is heavy, correlation between the remaining light quarks would become clear.
- L_1 : ρ mode, L_2 : λ mode.

複数の崩壊モードで測定

PRD89,052003(2014) PRD94,032002(2016) N $\Xi_{\rm c}(3055)^+$ Events / (0.004 GeV/c 00 100 00 004 GeV/c (a) (C) Ξ_c(3080)⁺ Ξ_c(2980)⁺ Ξ_c(3080)⁺ Ξ_c(3055)⁺ Events / (0.002 GeV/c C 40 20 0^{2.95} 3.05 3.1 3.15 3.2 3 M(AD*) (GeV/c2) $M(\Lambda_c^+ K^- \pi^+)$ (GeV/c²)

"charm baryon + light hadron"か"charm meson + baryon"か。 こうした情報もまだ得られてなかった。 J^P決定にはさらに高統計データが必要。

競争相手の動向も見ておこう

Doubly charmed baryon, Ξ_{cc}^{++} unseen in Belle and seen in LHCb.

最後に

- Quarkonium(-like) XYZ states にしろ、Charmed baryons にしろ、Belleでわかったこともある一方で、宿題も たくさん残っている。Belle IIが果たすべき役割は多彩。
- ハドロン物理=非摂動論的QCDは以下の特徴を持つ系の 研究である。
 - 非可換群SU(3)対称性
 - 強結合
- ヒッグス粒子が複合粒子であった場合、その中の構成子を 結びつける相互作用はおそらく強結合だろう。その場合は ハドロン物理研究で開発される研究手法が有効な道具に なるだろう(世の中、何が役に立つかわからない)。