

Belle実験における 準包括的再構成法を用いた b→syのCP破れの差(ΔA_{CP})および アイツスピン非対称度(Δ_O)の測定 (To be submitted to PRD.)

綿貫峻,石川明正,山本均(東北大理) 他 Belle collaboration

S. Watanuki FPW2018@Kavli IPMU

2018/11/01

A_{CP}(b→sy)は非摂動の寄与が強く理論誤差が大きい
 荷電Bと中性BのA_{CP}を別々に計算して<u>差を取る</u>

$\Delta A_{CP}(B \to X_s \gamma) \equiv A_{CP}(B^+ \to X_s^+ \gamma) - A_{CP}(B^0 \to X_s^0 \gamma)$

SMでは完全にO%であるため新物理に対し高い感度を有する

	再	構成モ			
b	ポパッシュ パッパッシュ パッパッシュ パッパッシュ パッパッシュ パッパッシュ パッパック しゅう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょ	 γ - s - a - α - α - κ - κ	べく多くの約 「に最適な トレンジネ 冬状態 = X 黒 = Flavo	冬状態を申構成 手法 ス1 s r決定不可	/
Κ ⁻π+	$K^{-}\pi^{+}\pi^{+}\pi^{-}$	Κ⁻π ⁰ π ⁰	K⁻ηπ⁺	K ⁺ K ⁻ K ⁻	
K _s π⁻	K _s π⁺π⁻π⁻	Κ _s π ⁰ π ⁰	K _s ηπ⁻	K ⁺ K ⁻ K _s	/
K⁻π ⁰	Κ⁻π⁺π⁻π ⁰	Κ ⁻ π ⁺ π ⁰ π ⁰	K⁻ηπ ⁰	K ⁺ K ⁻ K ⁻ π ⁺	
$K_s \pi^0$	$K_s \pi^+ \pi^- \pi^0$	$K_s π^- π^0 π^0$	K_s η π^0	K⁺K⁻K₅π⁻	
$K^{-}\pi^{+}\pi^{-}$	$K^{-}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	$K^{-}\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	Κ⁻ηπ⁺π⁻	K ⁺ K ⁻ K ⁻ π ⁰	
$K_s \pi^+ \pi^-$	K _s π⁺π⁺π⁻π⁻	$K_s π^+ π^- π^0 π^0$	K _s ηπ⁺π⁻	K⁺K⁻K₅π ⁰	
Κ ⁻ π ⁺ π ⁰	$K_s π^+ π^- π^- π^0$	К⁻η	Κ⁻ηπ⁺π ⁰	計38モード; 	
K _s π⁻π⁰	Κ ⁻ π ⁺ π ⁺ π ⁻ π ⁰	κ _s η	K _s ηπ⁻π⁰	をカバー	

2018/11/01

S. Watanuki FPW2018@Kavli IPMU

BG suppression

S. Watanuki FPW2018@Kavli IPMU

BG suppression

Best Candidate Selection

- 最大のニューラルネット出力を持つ再構成候補をベストな再構成として選別
- Continuum事象削減の後で行う

	Signal	Cross-feed	Continuum	BB BG	Significance	S/N
Reconstruct	45,786	106,599	7,524,916	905,933	16	0.005
π^{O}/η veto	30,385	61,202	1,316,842	239,962	24	0.018
D veto	29,256	50,344	1,032,962	173,099	26	0.023
Neural Net	14,847	7,241	16,050	37,938	54	0.195
BCS	13,189	3,924	11,917	5,158	71	0.386
Cut Efficiency	28.8%	3.7%	0.2%	0.6%		

X_s fractionの較正

EfficiencyはX_sモードに依存する

- データのfractionに合うように、 PYTHIA(MC生成のパラメータ) を調整してMCを生成し直す

 – X_s fractionを全タイプ2σ 以内に収めることに成功 (→)
 - -- = Data \blacksquare = MC (Before) \blacksquare = MC (After)
- これにより非再構成モードの fractionもある程度合う
 3. 最後に再構成モードのfractionを 直接補正してデータに合わせる

崩壞分岐比測定

Previous Belle

Previous BaBar

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

 m_{Xs} (GeV/c²)

(10 ⁻⁴)	本研究	Belle	BaBar	SM
BR(sγ)	3.35	3.74	3.51	3.36
E _v >1.6	±0.10	±0.18	±0.20	±0.23
(ĠeV)		±0.35	±0.51	

ŧ

5

0

0.6 0.8

Measurement of ΔA_{CP} and Δ_{O-}

- B中間子を5つのパターンに分類して同時フィット
 - B⁻, B⁺, B̄⁰, B⁰, およびB⁰_{amb}
 - $-B^{0}_{amb}$ は終状態からフレーバーを決定できないモード(K_s $\pi^{0}\gamma$ 等)
 - Continuumの曲率はoff-resonanceのデータ分布(荷電/中性/フレーバー不明に分類)とパラメータをシェアして同時フィット
- 5 on-resonance + 3 off-resonance
 = 合計8つの分布を同時フィット
- ・ 動かすパラメータは16個 (↓

Parameters	B	B ⁺	Β¯ο	Bo	B^{O}_{amb}
信号事象数 (A _{CP} , A _{O-} などを割り当て)	0	0	0	0	0
BG事象数 (on-reso.)	0	0	0	0	0
BG事象数 (off-reso.)	(\supset	(\supset	0
BG曲率 (on/offでシェア)	(\supset	(\supset	0

S. Watanuki FPW2018@Kavli IPMU

Source	ΔA_{CP} [%]	Δ_{0-} [%]				
Direct calibration	-	0.576		糸布ӛ円⇒	É	
	-	-0.579		ᄢᆸᆓᄼ		
Missing fraction	-	0.004				
	_	-0.004				
Fixed parameters	0.530	0.600				/
N	-0.504	-0.472	Red max			/
Tracking	-	0.019	Blue : seco	and me	x	
		-0.019				/
Pi0/Eta 特に	-	0.007				/
ピーキン	グ -	-0.007		ΔA_{CP}	Δ_{O^-}	_ /
Ks 事象数の	-	0.012	$\tau + -/\tau 00$		0.186	7/
	-	-0.012	$B^{0}B^{0}E$	-	-0.186	
PID		0.044	$ f+-/f00 \leq B^+B^-O$	比 -	1.150	
	_	-0.044			-1.150	
Detection asymmetry	0.388	0.000	ΔE modification	-	0.030	
	-0.388	-0.000		_	-0.060	
$A_{CP}^{\pm}(X_s\eta)$	0.022	0.001	K [*] -Xs transition	-	0.120	
	-0.022	-0.001		-	-0.120	
$A_{CP}^{\pm}(K\eta')$	0.000	0.000	MC statistics	-	0.026	
	-0.000	-0.000		_	-0.026	
$A_{CP}^{\pm}(ho\gamma)$	0.001	0.000	Fitter bias	0.107	0.080	
	-0.001	-0.000		-0.107	-0.080	
$A^0_{CP}(X_s\eta)$	0.033	0.002	Total	0.667	1.440]
	-0.033	-0.002		-0.646	-1.396	
$\Delta_{0-}(\rho\gamma)$	0.003	0.005				-
2018/11/01	-0.003	-0.005^{Watar}				20

崩壊分岐比の理論誤差への制限

 $\frac{\Delta B R_{s\gamma}^{RP78}}{B R_{s\gamma}} \approx -\frac{1 \pm 0.3}{3}$

- $= + (0.16 \pm 0.50_{stat} \pm 0.32_{syst} \pm 0.38_{f_{+-}/f_{00}} \pm 0.05_{SU(3)})\%$
- 本測定結果により2gのmarginを取った
- 最終的に、これまで支配的だったC-とC。の干渉における resolved yによる非摂動の理論的不定性を1.45%まで抑制 した

これまでの理論誤差 • non-perturbative $\pm 5\%$ • この内のC₇とC₈の干渉効果の不定性を削減 • higher order $\pm 3\%$ • interpolation $\pm 3\%$ • parametric $\pm 2\%$...etc. → 他の理論的不定性 よりも小さい

- Belle実験のフルデータ711fb⁻¹を用いた準包括的 再構成法により、b→sγのΔA_{CP}, Δ₀-を測定
- ・世界最高精度の測定結果を得た
- ΔA_{CP} はlm(C₈/C₇)に感度があるが標準模型 (ΔA_{CP} =O)を越える新物理の兆候はなし – Gluinoを介するEWPのモデルにおけるパラメータに、
 - LHCより高い領域で制限を掛けた
- Δ_{O} -は系統誤差も含めて1 σ 以内でOと無矛盾 - BR(B→X,y)の理論誤差として大きいとされていた非摂
 - 動効果の寄与を高い信頼度で大幅に削減した

Obs.	Our results (711 fb^{-1})	World Average (BaBar)
ΔA_{CP}	$(3.69 \pm 2.65 \pm 0.76)\%$	$(5.0 \pm 3.9 \pm 1.5)\%$
Δ_{O^-}	$(-0.48 \pm 1.49 \pm 0.97 \pm 1.15)\%$	$(-0.6 \pm 5.8 \pm 2.6)\%$

Belle IIへの展望

- ΔA_{CP}は統計誤差が支配的
 711fb⁻¹で±2.4%
 - → 50ab⁻¹で±0.3% (現在の系統誤差の半分以下)
- 系統誤差もほぼcontrol sampleやsidebandの統計により決まっているので、多くは統計誤差と同様に改善
- 最終的に全体の誤差は0.4%まで削減される見込み

ΔA_{CP}の導出背景

- ACP計算には、direct photonとresolved photonの2種 類の寄与がある
 - directは弱い相互作用の演算子に結合する有効理論の寄与(摂動 計算可能)
 - resolvedはハドロン的な内部構造を持ったphotonが軽い parton(spectator quark)に結合する寄与(非摂動)
- 新物理(Wilson係数の虚部)の効果はどちらにも入る
 - しかしresolvedの寄与が支配的
 - directのSMの項はas, Im(e_s), (mc/mb)2で3重に抑制される
 - resolvedの寄与には新しいstrong phaseが入る
 - resolvedの寄与はnon-local operatorで定義されるパラメータ (hadronic parameter)に比例する
- Hadronic parametersはB中間子内のspectator quarkの 電荷に依存する (e_{spec}が現れる)
 - resolved photonの影響で生じた、このフレーバー依存の項は、 Λ_{QCD}/m_b 5%くらいのオーダー
 - 差を取ってこの項を取り出したのが△A_{CP}

Figure 7. The maximum value of $\Delta A_{\rm CP}(b \to s\gamma)$ as a function of $m_{\tilde{Q}}$. Here, $(\varepsilon'/\varepsilon_K)^{\rm SUSY} = 10.0 \times 10^{-4}$ is fixed. The parameters are $\gamma_R/\beta_R = -\gamma_L/\beta_L = 1$ and $m_{\tilde{g}}/m_{\tilde{Q}} = 1$ on the black line. In the left plot, $\gamma_R/\beta_R = -\gamma_L/\beta_L = 0.6, 0.8, 1.2$ with $m_{\tilde{g}}/m_{\tilde{Q}} = 1$ from left to right of the red lines. In the right plot, $m_{\tilde{g}}/m_{\tilde{Q}} = 1.8, 1.4, 0.8$ with $\gamma_R/\beta_R = -\gamma_L/\beta_L = 1$ from left to right of the green lines.

BR(B→X_sγ)の理論誤差

- 現在のSM予言値は BRSM = (3.36±0.23) × 10⁻⁴
- 誤差は以下のように寄与している:
 - 非摂動効果 ±5%
 - Higher order $\pm 3\%$
 - $-E_{\gamma}$ >1.6GeV \wedge Dinterpolation ±3%
 - Parametric $\pm 2\%$
- 最大の誤差である非摂動効果のうち支配的なのが resolved photonの効果
 - こいつを本研究で下げるのが大きな目的
- E, Ointerpolationは、Belle IIならfull inclusiveで もっと下まで見られるので更新

arXiv:1503.01789v2 $\mathcal{B}_{s\gamma}^{\text{SM}} = (3.36 \pm 0.23) \times 10^{-4}$ for $E_0 = 1.6 \,\text{GeV}.$ (6)

Individual contributions to the total uncertainty are of nonperturbative ($\pm 5\%$), higher-order ($\pm 3\%$), interpolation $(\pm 3\%)$ and parametric $(\pm 2\%)$ origin. They are combined in quadrature. The parametric one gets reduced with respect to Ref. [15], which becomes possible thanks to the new semileptonic fits of Ref. [32]. Our input parameters, their uncertainties and the corresponding correlation matrix can be found in Appendix D of Ref. [19]. Since we normalize to the semileptonic branching ratio $\mathcal{B}_{c\ell\nu}$, our result shows little sensitivity to the *b*-quark mass and the CKM angles. The main parametric uncertainty ($\pm 1.5\%$) originates from $\mathcal{B}_{c\ell\nu}$, while the next one $(\pm 0.75\%)$ comes from $\alpha_s(M_Z)$.

 d_R

h

Belle IIへの展望

- △A_{CP}は統計誤差が支配的
 - 統計誤差は711fb⁻¹で+/-2.4%なので、50ab⁻¹で+/-0.3%弱 - 現在の系統誤差の半分以下まで下がる => 次は系統誤差の改善
- 系統誤差で支配的なのはpeaking componentのイベント数の不定性
 - π⁰ prob. sidebandの統計数に依存するので、Belle IIではこちらも大き く改善される
 - η→γγのpeakingはη prob. sidebandの使用が統計的に厳しかったが、
 Belle IIでは高統計によりこれもできる可能性がある
- 次点で効いてくる荷電粒子の検出非対称度も、mbc sidebandの統計に依存した系統誤差が付いているので、大きく改善される見込み
- PDFはcontinuumの形状の決定が重要
- Δ₀₋はf₊₋/f₀₀を除けば統計誤差が支配的
 Belle IIではまずf₊₋/f₀₀の誤差を下げることが不可欠
- これを除いた系統誤差の中ではX_s fragmentation calibrationとπ⁰ peaking componentが大きい
 - X。fragmentationも本解析と同様の手法で高精度に求められるので誤 差を抑えられる(特にmXsの高いところが重要)

MCサンプルのfraction

現在のMCサンプルはX_sの質量スペクトラムは合っているが X_sの中で占める崩壊モードの割合(fraction)は不正確

$\Delta A_{CP} = (3.69 \pm 2.65 \pm 0.76) \%$ $\Delta_{0-} = (-0.48 \pm 1.49 \pm 0.97 \pm 1.15)\%$ $A_{CP}^{\pm} = (2.75 \pm 1.84 \pm 0.32)\%$ $A_{CP}^0 = (-0.94 \pm 1.74 \pm 0.47)\%$ $A_{CP}^{total} = (1.44 \pm 1.28 \pm 0.11)\%$ $\bar{A}_{CP} = (0.91 \pm 1.21 \pm 0.13)\%$

