

Belle II 実験ARICH検出器の Bhabhaイベントを用いた チェレンコフ角度分解能評価

東邦大学 理学研究科 物理学専攻 修士1年 北村 勇人

2018年11月1日

2018年11月1日

イントロダクション -Belle II 実験-

Belle II 実験

Belle Ⅱ 検出器

TOP

ECL

電子

- SuperKEK加速器により生成されるB中間子の崩壊を
 Belle Ⅱ 検出器で観測
- ・標準理論を超える新物理を探索

KLM

SVD

TOHO University

PXD FBelleからBelle Ⅱ ヘ」 ・加速器のアップグレード 統計数の増加 KEKB⇒SuperKEKB ルミノシティを40倍に向上 ・検出器のアップグレード 高Beam BGに対する適応

高性能化 etc.

2018年11月1日

Flavor Physics Workshop 2018

CDC

ARICH検出器

Aerogel Ring Imaging CHerenkov counter

- ・エンドキャップ部におけるK/m識別を担う
- •運動量領域0.5~4.0GeV/cにおいて4σの精度が目標@BelleⅡ

ARICH検出器

Aerogel Ring Imaging CHerenkov counter

- ・エンドキャップ部におけるK/m識別を担う
- ・運動量領域0.5~4.0GeV/cにおいて4σの精度が目標
- ・輻射体(Aerogel)と光検出器(HAPD)から構成

2018年11月1日

Flavor Physics Workshop 2018

TOHO University

ARICH検出器 -粒子識別原理-

Aerogel Ring Imaging CHerenkov counter

2018年11月1日

Flavor Physics Workshop 2018

TOHO University

ARICH検出器 -光検出器HAPD-

Hybrid Avalanche Photo-Detector

ARICH検出器 - Phase 2-

Belle II Phase2

・Belle II システムを用いたデータ取得およびデバックを目的 ・Belle II 実験として、約500pb⁻¹のデータを収集

BelleⅡ &ARICH検出器略歴

2016年2月~ Phase1 SuperKEKB試験運転
2017年9月 Belle II 検出器へARICH検出器インストール
2018年2月~ 宇宙線テスト

2018年3月19日~7月17日 Phase2ビームデータ取得 (4/26初衝突)

2018年9月~ ARICH検出器取り外し(Phase3へ向けた調整) 2019年2月~ Phase3へ

2018年11月1日

ARICH検出器 - Phase 2-

2018年11月1日

ARICH検出器 - Phase 2-

2018年11月1日

研究概要

Bhabhaイベントを用いたチェレンコフ角度分解能評価

Phase2におけるARICH検出器のチェレンコフ角度分解能を評価する
 Bhabha⇒ARICHを用いずにイベントの同定が可能&大量にデータ取得可能
 ・電子のチェレンコフ角θ_eの運動量依存性がフラットになる

2018年11月1日

研究概要

Bhabhaイベントを用いたチェレンコフ角度分解能評価

・Phase2においてセクター2,3,6を稼働し、データ取得したRunを解析

•Bhabha skim条件 ✓トラックが生成したとされるPoint abs(d0)<2:ビーム軸からの距離 & abs(z0)<4:ビーム軸方向の距離 ✓ 2TracksのCMSにおける開き角>2.88rad ✓ e-ID (P_{CMS}>0.5GeV, E/p>0.8)>=1 ←カロリメータによる情報 ✓ CMSにおけるtrack1の運動量 CMSにおけるBeam Energy > 0.35 ✓CMSにおけるガンマ線の最大Energy>0.35 ✓ track1と中性クラスターとの間における最大の角>2.618rad ・Bhabha MCシミュレーションとの比較も行った

2018年11月1日

Flavor Physics Workshop 2018

OHO University

ARICHトラック位置分布

ドリフトチェンバー(CDC)から外挿されたトラックが Aerogelの面にヒットするトラックを「ARICHトラック」とする

2018年11月1日

ARICHトラック位置分布 (データ vs. MC)

r=50cm,φ=0rad付近にあるピークが何故できているのかは不明 位置によるセレクションをかけずに全エリアを使った

2018年11月1日

Flavor Physics Workshop 2018

FOHO University

5

ARICHトラック運動量分布(データ vs. MC)

約7GeV/cの位置にBhabhaイベントによるピークが存在
6~8GeV/cの範囲でカット

2018年11月1日

MCでみられるAPD表面によるチェレンコフ光反射によるピークが データではみられない⇒今後の課題

2018年11月1日

チェレンコフ角度分布(データ)

チェレンコフ角度分解能評価

①ガウス(赤)+ガウス(青)
 +1次関数(緑)でフィッテイング
 (赤:Signal,青+緑:それ以外)
 ②1トラックあたりの有効光子数
 N_{pe}を算出

$$N_{pe} = \frac{Entries_{3\sigma}^{Red}}{F_{7}}$$

③1トラックあたりのチェレンコフ
角度分解能 σ_{track} を算出
 $\sigma_{track} = \frac{\sigma}{\sqrt{N_{pe}}}$
④4GeV/cにおけるK/ π の
チェレンコフ角度差約23mrad
よりK/ π 識別性能を算出

Cherenkov angle distribution (run3772 to 4559) September 25000 20000 15000 10000 5000 84 0.15 0.2 0.25 0.3 0.4 0.45 0.5 angle [rad] 3σ

2018年11月1日

チェレンコフ角度分布(データ vs. MC)

			Cherenkov angle distribution (run3772 to 4559)	
結果	データ	MC	²⁵⁰⁰⁰ データ	
µ[rad]	0.2948	0.2957	20000	
σ [rad]	0.0159	0.0144		
Npe 1トラックあたりの 有効光子数	9.03	10.21	5000 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 angle [rad]	
otrack [mrad] 1トラックあたりの 角度分解能	5.29	4.51	Cherenkov angle distribution (Bhabha MC)	
K/π 識別性能	4.3σ	5.1σ		
@4GeV/c K/πのチェレン 角度差約23mi	コフ角 rad		40 20 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 angle [rad]	
2018年11月1日 Flavor Physics Workshop 2018 00 TOHO University				

19

- Belle II 実験において、ARICH検出器はエンドキャップ部におけるK/π識別を担う
 ARICH検出器は輻射体Aerogelと光検出器HAPDより構成されている
- ・Phase2ではリングイメージを捉えることに成功
- ・しかし、冷却能力不足によりほぼ全てのRunにおいて、部分的に稼働
- ・研究の目的:Bhabhaイベントを用いて、Phase2におけるARICH検出器の チェレンコフ角度分解能を評価する
- ・MCシミュレーションとの比較も行った
- ・トラック位置分布と運動量分布による制限をかけ、チェレンコフ角度分布を確認
- ・データではAPD表面によるチェレンコフ光反射のピークがみられない(課題)
 ・データでは、角度分解能5.29mradであることがわかった

・4GeV/cにおけるKとπのチェレンコフ角の角度差が約23mradであるため、 4.3σのK/π識別能力を有していることがわかった ⇒要求されている角度分解能を満たしているといえる

2018年11月1日

Back up

2018年11月1日

チェレンコフ角度分布(データ詳細) u[rad]

0 00 10

2018年11月1日 Flavor Physics Workshop 2018 22				
K/π 識別性能 (4GeV/c)	4.3σ			
otrack [mrad] 1トラックあたりの 角度分解能	5.29	$\sigma_{\text{track}} = \frac{\sigma}{\sqrt{N_{\text{pe}}}}$ # of Track:29552		
Npe 1トラックあたりの 有効光子数	9.03	5000 0 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 angle [rad]		
Nbg 1トラックあたりの BG光子数	1.80	10000 5000 5000 10000 5000 5000 1000000 10000 10000 10000 10000 1000		
i – ii Signal	266958	p1 0.3177 ± 0.0012 p2 0.07744 ± 0.00172 p3 1719 ± 19.9		
ii BG entries	53250	20000 χ^2 / ndf 651.5 / 92 Prob 0 p0 1820 ± 24.4		
i 3σ entries	320208	Set Entries 525853 エデータ Mean 0.3034 Std Dev 0.07961		
σ[rad]	0.0159	Cherenkov angle distribution (run3772 to 4559)		
	0.2940			

BG

BG

4.4 Background contribution

From the position of incident Cherenkov light on photon detector we can determine Cherenkov angle and fill histogram it. On the right side of Fig. 14, we see that we do not get only one gaussian peak per incident charged particle of selected momentum (as in Fig. 4), but also additional background. Background can be explained by Cherenkov light that is reflected from APD surface and then produces photoelectron, by photoelectron backscattering, Cherenkov light from window, and internally reflected Cherenkov light. All this contributions are schematically shown in Fig. 4.

24

新冷却システム

Front-Endボード Mergerボード ⇒⊐ア(FPGA)が高温 (FEB:~50°C, MB:~60°C)

2018年11月1日

2018年11月1日

