Belle II実験Phase 2運転における、 シリコン崩壊点位置検出器を用いた ビームバックグラウンド研究

東京大学 後田研M2 谷川輝 Flavor Physics Workshop

SuperKEKB加速器: *B*, *D*, *τ*工場⇒フレーバー物理

- $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$
 - $7 \times 4 = 10.58 \text{GeV}$
- 高ルミノシティ
 - = 大電流×ナノビーム*
 - *大角度交差かつ細く極めて薄いビーム

本格運転(phase3: 2019/03-)に先立ち、 コミッショニング(phase2: 2018/03-07)を行った

ビームバックグラウンド

- ビーム軌道を外れた粒子が電磁シャワーや中性子を生じ、検出器へ • 信号事象に映り込む → **事象再構成の性能低下**
- ・放射線損傷
 →
 ・検出器の劣化、
 余命短縮

バックグラウンド(BG)の理解、低減がBelle II実験の命運を左右する

ビームBG等のせいで非常に汚い事象

ビームバックグラウンド

ビーム軌道を外れた粒子が電磁シャワーや中性子を生じ、検出器へ

①. 衝突事象由来

• 頻度の高い衝突事象によるもの、phase2のルミノシティでは見えない

②. ビーム由来 今回のテーマ

• **周回中に軌道を外れた粒子**やシンクロトロン放射など

2018FPW 谷川輝

 $(\mathbf{2})$

SVD(シリコン崩壊点位置検出器)

釣鐘状にビーム衝突点を囲む4層のシリコンストリップ検出器

- 荷電粒子の位置を測定、飛跡からB中間子の崩壊点を決定
- CP非対称度測定に不可欠

Phase2: SVDの受けるビームバックグラウンドを研究した

Phase2 SVD(コミッショニング: 2018/03-07)

Phase3 SVD(本格運転: 2019/03-)

Belle II 測定器

SVDは**両面ストリップ型のシリコンセンサー**で構成される ・粒子の電気信号を<u>縦横(表裏)のストリップ</u>から読み出す 12.5cm 12.5cm 12.5cm 12.5cm 12.5cm 12.5cm 12.5cm 12.5cm

BG粒子が大量の**ゴーストヒット**を生む →トラッキング効率の低下

- BG量はOccupancy(ストリップ占有率)として評価 (=1イベント当たり、何%のストリップが鳴っているか)
- トラッキング効率を保持するには、Occupancy ≤ 2-3% (予想~1%)

放射線損傷に対しては比較的余裕がある

• 限界 10Mrad > 予想 ~0.1Mrad/yr

 $\xrightarrow{}$

768 512 strips/sensor

交点の数だけゴーストヒット

モデル:

2018/10/29

3通りのビームサイズで測定(6,7月の2回)

原因不明のBG量変化が見られる

- 加速器の振動数による共鳴・不安定性は定式化が困難
- **気温の変化**により入射器が不安定(7月)
- 電子リングで真空漏れ(7/14)

7月は悪条件の中、運転期間の都合でBG測定を強行 →安定した状態での再測定が必要

ビームを太くしすぎると現れるBG成分がある(原因不明)

- 衝突点付近での局所的な影響、
 - 衝突点で細くなるビームパイプにビームの端がこする?
- ビームが細いと寄与は小さい

MCシミュレーションとの比較

BG量の測定値は**10-20倍MCより多い**(両リングの合計)

- ずれの大きさは6,7月で無矛盾だが、特に電子リングは大きすぎる
 - 加速器のシミュレーションは難しい
- MCの見直しが必要(Geant4のジオメトリ、低運動量粒子など)

Phase3 BG量予想

Phase2の結果: 測定値はMCより数倍~O(10³)倍多い

→ 同じずれを仮定して、Phase3(本格運転)のMCをスケール

<u>①Phase3 最終目標(設計値)</u>

- Occupancy ~ 10% (限界: 2-3%)
- 最終的にはビーム由来BGを1桁低減する必要がある

②Phase3 初期(ビーム電流½)

- Occupancyは限界に近い
- ・ コリメータ、ビーム光学系の調整によるBG低減
 → 充分運転可能

まとめ

簡単なモデル(ビームガス+Touschek)でビーム由来のBGを説明できる

• 原因不明のBG量の変化や、太いビームで現れる成分も確認された

• 来年3月に運転再開後、加速器が安定している状態で再測定が必要

ビーム由来BGは測定値≫MC

• MCの見直しが必要(Geant4のジオメトリ、低運動量粒子など)

Phase3初期の条件では、運転可能

• 最終的にはビーム由来BGを1桁改善する必要

	ary Fili	m-diar	nond	doses co	mparison
prelimi.	Diamond	Dose HDV2 films (krad)	Dose Diamonds (krad)	Diamonds integration fraction (%)	
·	FW1	37.	5.1	80.8	
	FW2	44.	6.3	80.8	
	FW3	57.	11.6	80.8	
	FW4	87.	8.0	80.8	
	BW1	32.	1.3	56.5	
	BW2	39.	1.8	56.5	F. Di Capua - Universita di Napoli and
	BW3	111.	3.9	56.5	C. La Licata- Universita di Trieste and L. Vitale - Universita di Trieste and IN
	BW4	91.	4.5	56.5	

- Sometime, during the integration period, the diamond were saturated in the chosen amplifier range: an integral dose evaluation is in progress ٠
- Films doses are higher than diamonds (factor from 5 to 10) ٠
- Several test and intercalibrations film-diamond are in progress to better understand 10 ٠ possible origins

bkg scale
bkg x 1
bkg x 2
bkg x 3
bkg x 5
bkg x 10
Full trackin
bkg scale
bkg x 1
bkg x 2
bkg x 3
0
bkg x 5
bkg x 1 bkg x 2 bkg x 3

- Note: hit efficiency only on matched TC ⇒ biased!
- ave. # tracks in $B\bar{B}$ event = 11 \Rightarrow prob. fully reconstruct = ϵ^{11} :

•
$$\epsilon = 0.955 \Rightarrow \epsilon^{11} = 0.603$$

• $\epsilon = 0.939 \Rightarrow \epsilon^{11} = 0.500$

(ロ)(同)(目)(目)(日)(日)の(の)

lidation method

- generate 1000 MC events of $\Upsilon(4S) \rightarrow B\bar{B}$
- use MC-true tracks for normalization:
 - use true information to connect detector hits into a track candidate (TC) \Rightarrow MC-track candidate
 - a reconstructed TC is matched to a MC-TC if at least 60% of the contained hits are also contained in the MC-TC
 - finding efficiency: # reconstructed TC matched to MC-TC/ # MC- TC
 - $\bullet\,$ fake rate: # unmatched TC / # total TC

Thomas Lück for the Bellell tracking group, at the 31st B2GN

