

Belle II実験 電磁カロリメータでの 放射線量測定

奈良女子大学

加納 美佳

2018/11/1 flavor physics workshop 2018 @Kavli IPMU

目次

- ・イントロダクション
 - Belle II実験
 - 電磁カロリメータ(ECL)
- PIN-PD電流値モニター
 - -研究の動機
 - 測定原理、セットアップ
- 結果
 - -加速器の運転状況とPIN-PD電流値の比較
 - Crystalのあびた放射線量の積算
- まとめ

目次

- イントロダクション

 Belle II実験
 電磁カロリメータ(ECL)
- PIN-PD電流値モニター
 - -研究の動機
 - 測定原理、セットアップ
- 結果
 - 加速器の運転状況とPIN-PD電流値の比較
 Crystalのあびた放射線量の積算
- まとめ

- PIN-PD電流値モニター
 - -研究の動機
 - 測定原理、セットアップ
- 結果
 - 加速器の運転状況とPIN-PD電流値の比較
 Crystalのあびた放射線量の積算

6

まとめ

研究の動機

 Belle II実験では衝突頻度の増加によりビーム バックグラウンドの増加が見込まれる

- ・ビーム運転中ECLのCsI(TI)結晶はビームバックグ ラウンドによる放射線被ばくを受け続けている
- 放射線被ばくによって結晶の発光量が減少する

研究の動機2

- PIN-PDに流れる電流をモニターすることにより、ビームバックグラウンドを暗電流からの増加分として検出できる
- PIN-PD電流値モニターはCsI(TI)結晶があびた 放射線メータとして機能する

→電流値モニターシステムの構築

圧降下をDC電圧信号で出力

•5秒間隔でデータ収集を行う

PIN-PD電流値モニターの分割

- φ方向:8分割
- 0方向:6分割
 - 2分割 (In&Out)

@Forward endcap & Backward endcap

- 2分割 (Fwd.&Bwd.)

@Barrel

ルミノシティが目標値に達した時に1年間で CsI(TI) 結晶があびる放射線量の予測 Gy/year

1測定点あたりの結晶の本数

前方エンド キャップ	内側	28本
	外側	116本
バレル	前方	384本 or 480本
	後方	352本 or 440本
後方エンド キャップ	外側	60本
	内側	60本

作業の話

•デージーチェーンケーブル

PIN-PD バイアス電圧

Test pulse

...etc

・切断箇所より先にバイアス電圧を供給するため、デージーチェーンケー ブルの端に専用のアダプターをとりつけて、LEMOケーブルで配線。

- イントロダクション

 Belle II実験
 電磁カロリメータ(ECL)

 PIN-PD電流値モニター

 研究の動機
 測定原理、セットアップ
- 結果
 - -加速器の運転状況とPIN-PD電流値の比較

- Crystalのあびた放射線量の積算
- まとめ

Time [hour]

• dD/dt [Gy/sec] = 4.0×10⁻⁸×I_{rad}[nA] –結晶の重さ(約5kg)と読み出し光量(5000 p.e./MeV) から決まる

• $D[Gy] = \Sigma dD/dt \Delta t$

 $(\Delta t=5 \text{ sec})$

04/06~07/17 (phase2期間中) 放射線被ばく量の積算@Barrel

Belle 実験との 比較

- Belle実験:10年間の 運転で放射線被ばく の積算が1Gy
 →1年で0.1Gy
- Belle II: Phase2運転(14週)で 0.2~0.4Gy

☆Phase2期間中にBelle実験2~4年分の放射線被ばくを受けた

04/06~07/17 (phase2期間中) 放射線被ばく量の積算@Backward Endcap

電流值 @Forward endcap (cf Barrel)

温度 @Forward endcap (cf Barrel)

27

- CsI(TI)結晶の読み出しに用いるPIN-PDの電流 値をモニターすることでCsI(TI)結晶の受けた 放射線量を見積もった
- ・電流値は10 kΩの抵抗の電圧降下をピック アップしDC電圧として読み出す
- 4/6~7/17(phase2)の期間でCsI(TI)結晶があび た放射線量の積算はバレル前方で~0.25 Gy 後方で~0.40 Gy(不定性~20%)であることがわ かった。(Belle実験では10年間で~1 Gy)

30

Back up

CsI(TI)結晶の放射線耐性

- Belle/Belle II実験で用いられているカウ ンターと全く同じカウンターで放射線耐 性試験を行なった結果
- Belle II実験の10年で100Gyの予測(=10 krad)
- Belle II実験の10年で、~20%発光量が 低下する。カウンターによっては40%低 下するものもある
- 40%発光量が低下: 500 keV
- Belle IIでみるのは10 MeV以上のオー ダー
- ビームバックグラウンド起源の光子 (2~5 MeV)によるパイルアップノイズは エレキノイズ(<1 MeV)以上
- Belle II 実験においては

発光量の低下による分解能の低下よりビームバックグラウンドに よるパイルアップの方が問題!

Radiation Hardness Study of CsI(TI) Crystals for the Belle II Calorimeter (2017)参照

発光量低下

BG simulation

放射線量の算出

1 Gy	1 J/kg
1 J	6.24×10 ¹⁸ eV
Csl結晶の重さ	5 kg
発光量	5000 e-h/MeV
電気素量	1.6×10 ⁻¹⁹ C
1 year	~10 ⁷ sec

1 [Gy/yr] ×5 [kg] ×6.24×10¹⁸ [eV/J] / 10⁷ [sec/yr] / 10⁶ ×5000 ×1.6×10⁻¹⁹ ~2.5 [nA]

phase2期間中の暗電流値の変化

暗電流の基準は14点

phase2期間中の暗電流値の変化

暗電流の基準は14点

放射線被ばく量のerrorの見積もり

 $I_{rad} = I_{bias} - I_{dark}$ (増加電流 = 測定電流 - 暗電流) - I_{dark} はメンテナンス日毎に更 新 $\Delta I_{rad} = \Delta I_{dark}$

38

dD/dt [Gy/sec]
 =4.0×10⁻⁸×I_{rad}[nA]
 –結晶の重さ(5kg)と発光量(5000 p.e./MeV)から決まる

•
$$D [Gy] = \Sigma dD/dt \Delta t$$

(Δt =5 sec)

$$\Delta D = \sqrt{\Sigma} (\Delta D_i)^2$$